These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 36394655)
1. Crop classification by using dual-pol SAR vegetation indices derived from Sentinel-1 SAR-C data. Mishra D; Pathak G; Singh BP; Mohit ; Sihag P; Rajeev ; Singh K; Singh S Environ Monit Assess; 2022 Nov; 195(1):115. PubMed ID: 36394655 [TBL] [Abstract][Full Text] [Related]
2. Irrigated Crop Types Mapping in Tashkent Province of Uzbekistan with Remote Sensing-Based Classification Methods. Erdanaev E; Kappas M; Wyss D Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957240 [TBL] [Abstract][Full Text] [Related]
3. Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2. Meroni M; d'Andrimont R; Vrieling A; Fasbender D; Lemoine G; Rembold F; Seguini L; Verhegghen A Remote Sens Environ; 2021 Feb; 253():112232. PubMed ID: 33536689 [TBL] [Abstract][Full Text] [Related]
4. Rapid and Automated Approach for Early Crop Mapping Using Sentinel-1 and Sentinel-2 on Google Earth Engine; A Case of a Highly Heterogeneous and Fragmented Agricultural Region. Saad El Imanni H; El Harti A; Hssaisoune M; Velastegui-Montoya A; Elbouzidi A; Addi M; El Iysaouy L; El Hachimi J J Imaging; 2022 Nov; 8(12):. PubMed ID: 36547481 [TBL] [Abstract][Full Text] [Related]
5. Application of C-band sentinel-1A SAR data as proxies for detecting oil spills of Chennai, East Coast of India. Dasari K; Anjaneyulu L; Nadimikeri J Mar Pollut Bull; 2022 Jan; 174():113182. PubMed ID: 34844147 [TBL] [Abstract][Full Text] [Related]
6. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Sun C; Bian Y; Zhou T; Pan J Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130689 [TBL] [Abstract][Full Text] [Related]
7. Multi-Annual Evaluation of Time Series of Sentinel-1 Interferometric Coherence as a Tool for Crop Monitoring. Villarroya-Carpio A; Lopez-Sanchez JM Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850430 [TBL] [Abstract][Full Text] [Related]
8. Assessing lodging damage of jute crop due to super cyclone Amphan using multi-temporal Sentinel-1 and Sentinel-2 data over parts of West Bengal, India. Chakraborty A; Srikanth P; Murthy CS; Rao PVN; Chowdhury S Environ Monit Assess; 2021 Jul; 193(8):464. PubMed ID: 34218392 [TBL] [Abstract][Full Text] [Related]
9. Land cover mapping using Sentinel-1 SAR and Landsat 8 imageries of Lagos State for 2017. Makinde EO; Oyelade EO Environ Sci Pollut Res Int; 2020 Jan; 27(1):66-74. PubMed ID: 31201700 [TBL] [Abstract][Full Text] [Related]
10. Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery. Han D; Liu S; Du Y; Xie X; Fan L; Lei L; Li Z; Yang H; Yang G Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533327 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of multifrequency SAR data for estimating tropical above-ground biomass by employing radiative transfer modeling. Sainuddin FV; Chirakkal S; Asok SV; Das AK; Putrevu D Environ Monit Assess; 2023 Aug; 195(9):1102. PubMed ID: 37642785 [TBL] [Abstract][Full Text] [Related]
12. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods. Ozigis MS; Kaduk JD; Jarvis CH; da Conceição Bispo P; Balzter H Environ Pollut; 2020 Jan; 256():113360. PubMed ID: 31672372 [TBL] [Abstract][Full Text] [Related]
13. Using time-series Sentinel-1 data for soil prediction on invaded coastal wetlands. Yang RM; Guo WW Environ Monit Assess; 2019 Jun; 191(7):462. PubMed ID: 31240492 [TBL] [Abstract][Full Text] [Related]
14. Combined Use of Sentinel-1 SAR and Landsat Sensors Products for Residual Soil Moisture Retrieval over Agricultural Fields in the Upper Blue Nile Basin, Ethiopia. Ayehu G; Tadesse T; Gessesse B; Yigrem Y; M Melesse A Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32526894 [TBL] [Abstract][Full Text] [Related]
15. Geo-spatial analysis of the temporal trends of kharif crop phenology metrics over India and its relationships with rainfall parameters. Chakraborty A; Seshasai MV; Dadhwal VK Environ Monit Assess; 2014 Jul; 186(7):4531-42. PubMed ID: 24682603 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions. Mondal P; Jain M; DeFries RS; Galford GL; Small C J Environ Manage; 2015 Jan; 148():21-30. PubMed ID: 24680541 [TBL] [Abstract][Full Text] [Related]
17. Fusing optical and SAR time series for LAI gap fillingwith multioutput Gaussian processes. Pipia L; Muñoz-Marí J; Amin E; Belda S; Camps-Valls G; Verrelst J Remote Sens Environ; 2019 Dec; 235():. PubMed ID: 36082234 [TBL] [Abstract][Full Text] [Related]
18. Cropland Mapping Using Sentinel-1 Data in the Southern Part of the Russian Far East. Dubrovin K; Stepanov A; Verkhoturov A Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765958 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of atmospheric carbon dioxide over different land cover types in India. Chhabra A; Gohel A Environ Monit Assess; 2020 Jan; 191(Suppl 3):799. PubMed ID: 31989313 [TBL] [Abstract][Full Text] [Related]
20. Long short term memory deep net performance on fused Planet-Scope and Sentinel-2 imagery for detection of agricultural crop. Rehman TU; Alam M; Minallah N; Khan W; Frnda J; Mushtaq S; Ajmal M PLoS One; 2023; 18(2):e0271897. PubMed ID: 36735648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]