These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36394763)
1. An approach combining bioinformatics and machine learning to identify eight autophagy-related biomarkers and construct molecular mechanisms underlying COVID-19 and major depressive disorders. Yu C; Zhang FJ; Zhang LL; Xian DX; Li Y; Li JJ; Tang SX; Li XJ; Liu Y; Peng M; Zhang L; Wang S Eur Rev Med Pharmacol Sci; 2022 Nov; 26(21):8129-8143. PubMed ID: 36394763 [TBL] [Abstract][Full Text] [Related]
2. Machine learning and bioinformatics to identify 8 autophagy-related biomarkers and construct gene regulatory networks in dilated cardiomyopathy. Zhang F; Xia M; Jiang J; Wang S; Zhao Q; Yu C; Yu J; Xian D; Li X; Zhang L; Liu Y; Peng M Sci Rep; 2022 Sep; 12(1):15030. PubMed ID: 36056063 [TBL] [Abstract][Full Text] [Related]
3. Identification of shared pathogenetic mechanisms between COVID-19 and IC through bioinformatics and system biology. Sun Z; Zhang L; Wang R; Wang Z; Liang X; Gao J Sci Rep; 2024 Jan; 14(1):2114. PubMed ID: 38267482 [TBL] [Abstract][Full Text] [Related]
4. An association study of clock genes with major depressive disorder. Li Y; Miao P; Li F; Huang J; Fan L; Chen Q; Zhang Y; Yan F; Gao Y J Affect Disord; 2023 Nov; 341():147-153. PubMed ID: 37633529 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive analysis of endoplasmic reticulum stress and immune infiltration in major depressive disorder. Zhang J; Xie S; Chen Y; Zhou X; Zheng Z; Yang L; Li Y Front Psychiatry; 2022; 13():1008124. PubMed ID: 36353576 [TBL] [Abstract][Full Text] [Related]
6. Combining bioinformatics and machine learning algorithms to identify and analyze shared biomarkers and pathways in COVID-19 convalescence and diabetes mellitus. Shen J; Wang Y; Deng X; Sana SRGL Front Endocrinol (Lausanne); 2023; 14():1306325. PubMed ID: 38169604 [TBL] [Abstract][Full Text] [Related]
7. A bioinformatics approach to identifying the biomarkers and pathogenesis of major depressive disorder combined with acute myocardial infarction. Yu C; Zhang F; Zhang L; Li J; Tang S; Li X; Peng M; Zhao Q; Zhu X Am J Transl Res; 2023; 15(2):932-948. PubMed ID: 36915729 [TBL] [Abstract][Full Text] [Related]
8. Screening of potential biomarkers in peripheral blood of patients with depression based on weighted gene co-expression network analysis and machine learning algorithms. Wang Z; Meng Z; Chen C Front Psychiatry; 2022; 13():1009911. PubMed ID: 36325528 [TBL] [Abstract][Full Text] [Related]
9. Association of aging related genes and immune microenvironment with major depressive disorder. Yan B; Liao P; Han Z; Zhao J; Gao H; Liu Y; Chen F; Lei P J Affect Disord; 2025 Jan; 369():706-717. PubMed ID: 39419187 [TBL] [Abstract][Full Text] [Related]
10. A machine learning model for predicting patients with major depressive disorder: A study based on transcriptomic data. Liu S; Lu T; Zhao Q; Fu B; Wang H; Li G; Yang F; Huang J; Lyu N Front Neurosci; 2022; 16():949609. PubMed ID: 36003956 [TBL] [Abstract][Full Text] [Related]
11. Machine learning and bioinformatics analysis to identify autophagy-related biomarkers in peripheral blood for rheumatoid arthritis. Dong G; Gao H; Chen Y; Yang H Front Genet; 2023; 14():1238407. PubMed ID: 37779906 [No Abstract] [Full Text] [Related]
12. Weighted Gene Coexpression Network Analysis Identifies Specific Modules and Hub Genes Related to Major Depression. Zhang G; Xu S; Yuan Z; Shen L Neuropsychiatr Dis Treat; 2020; 16():703-713. PubMed ID: 32214815 [TBL] [Abstract][Full Text] [Related]
13. Mining key circadian biomarkers for major depressive disorder by integrating bioinformatics and machine learning. Shi Y; Zhu J; Hou C; Li X; Tong Q Aging (Albany NY); 2024 Jun; 16(12):10299-10320. PubMed ID: 38874508 [TBL] [Abstract][Full Text] [Related]
14. Deciphering the Genetic Links between Psychological Stress, Autophagy, and Dermatological Health: Insights from Bioinformatics, Single-Cell Analysis, and Machine Learning in Psoriasis and Anxiety Disorders. Liu XL; Chang LS Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791423 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive bioinformatics analysis of co-expressed genes of post-traumatic stress disorder and major depressive disorder. Zhang H; Luo P; Jiang X J Affect Disord; 2024 Mar; 349():541-551. PubMed ID: 38218255 [TBL] [Abstract][Full Text] [Related]
16. Screening of key biomarkers of tendinopathy based on bioinformatics and machine learning algorithms. Zhu YX; Huang JQ; Ming YY; Zhuang Z; Xia H PLoS One; 2021; 16(10):e0259475. PubMed ID: 34714891 [TBL] [Abstract][Full Text] [Related]
17. Blood transcriptome analysis revealed the crosstalk between COVID-19 and HIV. Yan C; Niu Y; Wang X Front Immunol; 2022; 13():1008653. PubMed ID: 36389792 [TBL] [Abstract][Full Text] [Related]
18. Integrative bioinformatics analysis to identify novel biomarkers associated with non-obstructive azoospermia. Zhong Y; Zhao J; Deng H; Wu Y; Zhu L; Yang M; Liu Q; Luo G; Ma W; Li H Front Immunol; 2023; 14():1088261. PubMed ID: 36969237 [TBL] [Abstract][Full Text] [Related]
19. Identification and validation of autophagy-related genes in Kawasaki disease. Zhu H; Xu B; Hu C; Li A; Liao Q Hereditas; 2023 Apr; 160(1):17. PubMed ID: 37085930 [TBL] [Abstract][Full Text] [Related]
20. Identification of 7 mitochondria-related genes as diagnostic biomarkers of MDD and their correlation with immune infiltration: New insights from bioinformatics analysis. Liu X; Wu Y; Li M J Affect Disord; 2024 Mar; 349():86-100. PubMed ID: 38199392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]