BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 36394779)

  • 1. On the role of mechanical signals on sprouting angiogenesis through computer modeling approaches.
    Abdalrahman T; Checa S
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1623-1640. PubMed ID: 36394779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Force at the Tip--Modelling Tension and Proliferation in Sprouting Angiogenesis.
    Santos-Oliveira P; Correia A; Rodrigues T; Ribeiro-Rodrigues TM; Matafome P; Rodríguez-Manzaneque JC; Seiça R; Girão H; Travasso RD
    PLoS Comput Biol; 2015 Aug; 11(8):e1004436. PubMed ID: 26248210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix deformations around angiogenic sprouts correlate to sprout dynamics and suggest pulling activity.
    Vaeyens MM; Jorge-Peñas A; Barrasa-Fano J; Steuwe C; Heck T; Carmeliet P; Roeffaers M; Van Oosterwyck H
    Angiogenesis; 2020 Aug; 23(3):315-324. PubMed ID: 31997048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modeling of angiogenesis: The importance of cell rearrangements during vascular growth.
    Stepanova D; Byrne HM; Maini PK; Alarcón T
    WIREs Mech Dis; 2024; 16(2):e1634. PubMed ID: 38084799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External mechanical loading overrules cell-cell mechanical communication in sprouting angiogenesis during early bone regeneration.
    Dazzi C; Mehl J; Benamar M; Gerhardt H; Knaus P; Duda GN; Checa S
    PLoS Comput Biol; 2023 Nov; 19(11):e1011647. PubMed ID: 37956208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis.
    Ghaffari S; Leask RL; Jones EA
    Development; 2015 Dec; 142(23):4151-7. PubMed ID: 26552886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of mechanical stresses in angiogenesis.
    Shiu YT; Weiss JA; Hoying JB; Iwamoto MN; Joung IS; Quam CT
    Crit Rev Biomed Eng; 2005; 33(5):431-510. PubMed ID: 16000089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic traction force microscopy to study mechanotransduction in angiogenesis.
    Boldock L; Wittkowske C; Perrault CM
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28164414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-oriented modeling of angiogenesis.
    Guidolin D; Rebuffat P; Albertin G
    ScientificWorldJournal; 2011; 11():1735-48. PubMed ID: 22125432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid shear stress threshold regulates angiogenic sprouting.
    Galie PA; Nguyen DH; Choi CK; Cohen DM; Janmey PA; Chen CS
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7968-73. PubMed ID: 24843171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modelling of angiogenesis.
    Chaplain MA
    J Neurooncol; 2000; 50(1-2):37-51. PubMed ID: 11245280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of in vivo flow dynamics on angiogenesis by computational modeling.
    Ghaffari S; Leask RL; Jones EA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():961-4. PubMed ID: 26736423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Modeling to Quantify the Contributions of VEGFR1, VEGFR2, and Lateral Inhibition in Sprouting Angiogenesis.
    Kühn C; Checa S
    Front Physiol; 2019; 10():288. PubMed ID: 30971939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Simulation of Tumor-Induced Angiogenesis.
    Sugimoto M
    Methods Mol Biol; 2023; 2553():275-283. PubMed ID: 36227549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid model for three-dimensional simulations of sprouting angiogenesis.
    Milde F; Bergdorf M; Koumoutsakos P
    Biophys J; 2008 Oct; 95(7):3146-60. PubMed ID: 18586846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.
    McDougall SR; Anderson AR; Chaplain MA; Sherratt JA
    Bull Math Biol; 2002 Jul; 64(4):673-702. PubMed ID: 12216417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid forces control endothelial sprouting.
    Song JW; Munn LL
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15342-7. PubMed ID: 21876168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational approaches for mechanobiology in cardiovascular development and diseases.
    Brown AL; Sexton ZA; Hu Z; Yang W; Marsden AL
    Curr Top Dev Biol; 2024; 156():19-50. PubMed ID: 38556423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow and endothelial cell phenotype regulation during sprouting angiogenesis.
    Bazmara H; Soltani M; Sefidgar M; Bazargan M; Mousavi Naeenian M; Rahmim A
    Med Biol Eng Comput; 2016 Mar; 54(2-3):547-58. PubMed ID: 26231087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational flow dynamics in a geometric model of intussusceptive angiogenesis.
    Filipovic N; Tsuda A; Lee GS; Miele LF; Lin M; Konerding MA; Mentzer SJ
    Microvasc Res; 2009 Dec; 78(3):286-93. PubMed ID: 19715707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.