These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 36394809)
1. Mapping of dust source susceptibility by remote sensing and machine learning techniques (case study: Iran-Iraq border). Pourhashemi S; Asadi MAZ; Boroughani M; Azadi H Environ Sci Pollut Res Int; 2023 Feb; 30(10):27965-27979. PubMed ID: 36394809 [TBL] [Abstract][Full Text] [Related]
2. Identifying sources of dust aerosol using a new framework based on remote sensing and modelling. Rahmati O; Mohammadi F; Ghiasi SS; Tiefenbacher J; Moghaddam DD; Coulon F; Nalivan OA; Tien Bui D Sci Total Environ; 2020 Oct; 737():139508. PubMed ID: 32531509 [TBL] [Abstract][Full Text] [Related]
3. Dust detection and susceptibility mapping by aiding satellite imagery time series and integration of ensemble machine learning with evolutionary algorithms. Razavi-Termeh SV; Sadeghi-Niaraki A; Naqvi RA; Choi SM Environ Pollut; 2023 Oct; 335():122241. PubMed ID: 37482338 [TBL] [Abstract][Full Text] [Related]
4. Spatial modeling of land subsidence using machine learning models and statistical methods. Sekkeravani MA; Bazrafshan O; Pourghasemi HR; Holisaz A Environ Sci Pollut Res Int; 2022 Apr; 29(19):28866-28883. PubMed ID: 34993808 [TBL] [Abstract][Full Text] [Related]
5. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
6. Spatial mapping of land susceptibility to dust emissions using optimization of attentive Interpretable Tabular Learning (TabNet) model. Razavi-Termeh SV; Sadeghi-Niaraki A; Sorooshian A; Abuhmed T; Choi SM J Environ Manage; 2024 May; 358():120682. PubMed ID: 38670008 [TBL] [Abstract][Full Text] [Related]
7. Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS. Golkarian A; Naghibi SA; Kalantar B; Pradhan B Environ Monit Assess; 2018 Feb; 190(3):149. PubMed ID: 29455381 [TBL] [Abstract][Full Text] [Related]
8. Spatio-temporal modeling of PM Shogrkhodaei SZ; Razavi-Termeh SV; Fathnia A Environ Pollut; 2021 Nov; 289():117859. PubMed ID: 34340183 [TBL] [Abstract][Full Text] [Related]
9. Environmental change monitoring in the arid and semi-arid regions: a case study Al-Basrah Province, Iraq. Hadeel AS; Jabbar MT; Chen X Environ Monit Assess; 2010 Aug; 167(1-4):371-85. PubMed ID: 19565344 [TBL] [Abstract][Full Text] [Related]
10. Understanding land degradation induced by gully erosion from the perspective of different geoenvironmental factors. Jaafari A; Janizadeh S; Abdo HG; Mafi-Gholami D; Adeli B J Environ Manage; 2022 Aug; 315():115181. PubMed ID: 35500480 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Different Machine Learning Methods for Predicting Cation Exchange Capacity Using Environmental and Remote Sensing Data. Saidi S; Ayoubi S; Shirvani M; Azizi K; Zeraatpisheh M Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146239 [TBL] [Abstract][Full Text] [Related]
12. Mapping of salty aeolian dust-source potential areas: Ensemble model or benchmark models? Choubin B; Hosseini FS; Rahmati O; Youshanloei MM; Jalali M Sci Total Environ; 2023 Jun; 877():163419. PubMed ID: 37040859 [TBL] [Abstract][Full Text] [Related]
13. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Arabameri A; Rezaei K; Cerda A; Lombardo L; Rodrigo-Comino J Sci Total Environ; 2019 Mar; 658():160-177. PubMed ID: 30577015 [TBL] [Abstract][Full Text] [Related]
14. A new integrated data mining model to map spatial variation in the susceptibility of land to act as a source of aeolian dust. Gholami H; Mohammadifar A; Pourghasemi HR; Collins AL Environ Sci Pollut Res Int; 2020 Nov; 27(33):42022-42039. PubMed ID: 32700281 [TBL] [Abstract][Full Text] [Related]
15. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Naghibi SA; Pourghasemi HR; Dixon B Environ Monit Assess; 2016 Jan; 188(1):44. PubMed ID: 26687087 [TBL] [Abstract][Full Text] [Related]
16. Dust storm index anomaly for sand-dust events monitoring in western Iran and its association with the NDVI and LST anomalies. Ebrahimi-Khusfi Z; Roustaei F Environ Sci Pollut Res Int; 2022 Feb; 29(8):11101-11115. PubMed ID: 34532789 [TBL] [Abstract][Full Text] [Related]
17. Advanced machine learning algorithms for flood susceptibility modeling - performance comparison: Red Sea, Egypt. Youssef AM; Pourghasemi HR; El-Haddad BA Environ Sci Pollut Res Int; 2022 Sep; 29(44):66768-66792. PubMed ID: 35508847 [TBL] [Abstract][Full Text] [Related]
18. Satellite imagery and machine learning for identification of aridity risk in central Java Indonesia. Prasetyo SYJ; Hartomo KD; Paseleng MC PeerJ Comput Sci; 2021; 7():e415. PubMed ID: 34084916 [TBL] [Abstract][Full Text] [Related]
19. Investigation of dust storms entering Western Iran using remotely sensed data and synoptic analysis. Boloorani AD; Nabavi SO; Bahrami HA; Mirzapour F; Kavosi M; Abasi E; Azizi R J Environ Health Sci Eng; 2014; 12(1):124. PubMed ID: 25426297 [TBL] [Abstract][Full Text] [Related]
20. Machine learning approaches in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in Golestan province, Iran. Mollalo A; Sadeghian A; Israel GD; Rashidi P; Sofizadeh A; Glass GE Acta Trop; 2018 Dec; 188():187-194. PubMed ID: 30201488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]