BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36394842)

  • 1. The Reliability and Acceptability of RDx-Based Tele-Controlled Subjective Refraction Compared with Traditional Subjective Refraction.
    Huang J; Li X; Yan T; Wen L; Pan L; Yang Z
    Transl Vis Sci Technol; 2022 Nov; 11(11):16. PubMed ID: 36394842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical Accuracy of the Nidek ARK-1 Autorefractor.
    Paudel N; Adhikari S; Thakur A; Shrestha B; Loughman J
    Optom Vis Sci; 2019 Jun; 96(6):407-413. PubMed ID: 31107837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative clinical routine for subjective refraction based on power vectors with trial frames.
    María Revert A; Conversa MA; Albarrán Diego C; Micó V
    Ophthalmic Physiol Opt; 2017 Jan; 37(1):24-32. PubMed ID: 28030877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the reliability of tele-refraction for real time consultation with a remote optometrist.
    Kapur N; Sabherwal S; Sharma P; Nayab J; Koh Pei Chen P; Srivastava S; Majumdar A
    PLoS One; 2024; 19(6):e0299491. PubMed ID: 38913708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy and precision of automated subjective refraction in young hyperopes under cycloplegia.
    Carracedo G; Carpena-Torres C; Pastrana C; Rodríguez-Lafora M; Serramito M; Privado-Aroco A; Espinosa-Vidal TM
    J Optom; 2023; 16(4):252-260. PubMed ID: 37019707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The precision of wavefront refraction compared to subjective refraction and autorefraction.
    Pesudovs K; Parker KE; Cheng H; Applegate RA
    Optom Vis Sci; 2007 May; 84(5):387-92. PubMed ID: 17502821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparison Between Refraction From an Adaptive Optics Visual Simulator and Clinical Refractions.
    Tabernero J; Otero C; Pardhan S
    Transl Vis Sci Technol; 2020 Jun; 9(7):23. PubMed ID: 32832229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assessment of refractive errors using a simple optical approach.
    Leube A; Kraft C; Ohlendorf A; Wahl S
    Clin Exp Optom; 2018 May; 101(3):386-391. PubMed ID: 29356102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COMPARISON OF SMARTPHONE-BASED AND AUTOMATED REFRACTION WITH SUBJECTIVE REFRACTION FOR SCREENING OF REFRACTIVE ERRORS.
    Ee CL; Samsudin A
    Ophthalmic Epidemiol; 2022 Oct; 29(5):588-594. PubMed ID: 34620023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of a traditional and wavefront autorefraction.
    Lebow KA; Campbell CE
    Optom Vis Sci; 2014 Oct; 91(10):1191-8. PubMed ID: 25198541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparison between Automated Subjective Refraction and Traditional Subjective Refraction in Keratoconus Patients.
    Carracedo G; Carpena-Torres C; Pastrana C; Privado-Aroco A; Serramito M; Espinosa-Vidal TM; Rodríguez-Lafora M
    Optom Vis Sci; 2021 Jun; 98(6):597-604. PubMed ID: 34081650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability and reproducibility of a handheld videorefractor.
    Ogbuehi KC; Almaliki WH; AlQarni A; Osuagwu UL
    Optom Vis Sci; 2015 May; 92(5):632-41. PubMed ID: 25822015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating refraction and visual acuity with the Nidek autorefractometer AR-360A in a randomized population-based screening study.
    Stoor K; Karvonen E; Liinamaa J; Saarela V
    Acta Ophthalmol; 2018 Jun; 96(4):384-389. PubMed ID: 29193822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical Evaluation Of a 0.05 D-step Binocular Wavefront Optometer in Young Adults in China.
    Cheng M; Chen X; Lei Y; Li B; Jiang Y; Xu Y; Zhou X; Wang X
    Clin Exp Optom; 2024 May; 107(4):395-401. PubMed ID: 36794379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of refractive error measures by the IRX3 aberrometer and autorefraction.
    McCullough SJ; Little JA; Breslin KM; Saunders KJ
    Optom Vis Sci; 2014 Oct; 91(10):1183-90. PubMed ID: 25192432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a simple-to-use, affordable, portable, wavefront aberrometry-based auto refractometer in the adult population: A prospective study.
    Rao DP; Negiloni K; Gurunathan S; Velkumar S; Sivaraman A; Baig AU; Kumari B; Murali K
    BMC Ophthalmol; 2022 Dec; 22(1):498. PubMed ID: 36536321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of subjective refraction with a clinical adaptive optics visual simulator.
    Hervella L; Villegas EA; Prieto PM; Artal P
    J Cataract Refract Surg; 2019 Jan; 45(1):87-93. PubMed ID: 30309774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subjective refraction using power vectors by updating a conventional phoropter with a Stokes lens for continuous astigmatic power generation.
    Moreno JRA; Micó V; Albarrán Diego C
    Ophthalmic Physiol Opt; 2023 Sep; 43(5):1029-1039. PubMed ID: 37264763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison Between Aberrometry-Based Binocular Refraction and Subjective Refraction.
    Carracedo G; Carpena-Torres C; Serramito M; Batres-Valderas L; Gonzalez-Bergaz A
    Transl Vis Sci Technol; 2018 Jul; 7(4):11. PubMed ID: 30087806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical evaluation of the Topcon BV-1000 automated subjective refraction system.
    Dave T; Fukuma Y
    Optom Vis Sci; 2004 May; 81(5):323-33. PubMed ID: 15181357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.