These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36394909)

  • 1. Structure-Guided Design of Halofuginone Derivatives as ATP-Aided Inhibitors Against Bacterial Prolyl-tRNA Synthetase.
    Cheng B; Cai Z; Luo Z; Luo S; Luo Z; Cheng Y; Yu Y; Guo J; Ju Y; Gu Q; Xu J; Jiang X; Li G; Zhou H
    J Med Chem; 2022 Dec; 65(23):15840-15855. PubMed ID: 36394909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of novel tRNA-amino acid dual-site inhibitors against threonyl-tRNA synthetase by fragment-based target hopping.
    Guo J; Chen B; Yu Y; Cheng B; Cheng Y; Ju Y; Gu Q; Xu J; Zhou H
    Eur J Med Chem; 2020 Feb; 187():111941. PubMed ID: 31821989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, Synthesis, and Proof-of-Concept of Triple-Site Inhibitors against Aminoacyl-tRNA Synthetases.
    Cai Z; Chen B; Yu Y; Guo J; Luo Z; Cheng B; Xu J; Gu Q; Zhou H
    J Med Chem; 2022 Apr; 65(7):5800-5820. PubMed ID: 35363470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-directed capture of bioactive herbal-based medicine on human tRNA synthetase.
    Zhou H; Sun L; Yang XL; Schimmel P
    Nature; 2013 Feb; 494(7435):121-4. PubMed ID: 23263184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of a novel prolyl-tRNA synthetase inhibitor and elucidation of its binding mode to the ATP site in complex with l-proline.
    Adachi R; Okada K; Skene R; Ogawa K; Miwa M; Tsuchinaga K; Ohkubo S; Henta T; Kawamoto T
    Biochem Biophys Res Commun; 2017 Jun; 488(2):393-399. PubMed ID: 28501621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-guided optimization and mechanistic study of a class of quinazolinone-threonine hybrids as antibacterial ThrRS inhibitors.
    Guo J; Chen B; Yu Y; Cheng B; Ju Y; Tang J; Cai Z; Gu Q; Xu J; Zhou H
    Eur J Med Chem; 2020 Dec; 207():112848. PubMed ID: 32980741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes in human prolyl-tRNA synthetase upon binding of the substrates proline and ATP and the inhibitor halofuginone.
    Son J; Lee EH; Park M; Kim JH; Kim J; Kim S; Jeon YH; Hwang KY
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):2136-45. PubMed ID: 24100331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis.
    Ravishankar S; Ambady A; Swetha RG; Anbarasu A; Ramaiah S; Sambandamurthy VK
    PLoS One; 2016; 11(1):e0147188. PubMed ID: 26794499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases.
    Ahel I; Stathopoulos C; Ambrogelly A; Sauerwald A; Toogood H; Hartsch T; Söll D
    J Biol Chem; 2002 Sep; 277(38):34743-8. PubMed ID: 12130657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of two bacterial prolyl-tRNA synthetases with and without a cis-editing domain.
    Crepin T; Yaremchuk A; Tukalo M; Cusack S
    Structure; 2006 Oct; 14(10):1511-25. PubMed ID: 17027500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic analyses of aminoacyl tRNA synthetases from human-infecting helminths.
    Goel P; Parvez S; Sharma A
    BMC Genomics; 2019 May; 20(1):333. PubMed ID: 31046663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and structure determination of prolyl-tRNA synthetase from Pseudomonas aeruginosa and development as a screening platform.
    Pena N; Dranow DM; Hu Y; Escamilla Y; Bullard JM
    Protein Sci; 2019 Apr; 28(4):727-737. PubMed ID: 30666738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exclusive use of trans-editing domains prevents proline mistranslation.
    Vargas-Rodriguez O; Musier-Forsyth K
    J Biol Chem; 2013 May; 288(20):14391-14399. PubMed ID: 23564458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review.
    Bouz G; Zitko J
    Bioorg Chem; 2021 May; 110():104806. PubMed ID: 33799176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminoacyl-tRNA synthetases as drug targets.
    Lukarska M; Palencia A
    Enzymes; 2020; 48():321-350. PubMed ID: 33837708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new mechanism of post-transfer editing by aminoacyl-tRNA synthetases: catalysis of hydrolytic reaction by bacterial-type prolyl-tRNA synthetase.
    Boyarshin KS; Priss AE; Rayevskiy AV; Ilchenko MM; Dubey IY; Kriklivyi IA; Yaremchuk AD; Tukalo MA
    J Biomol Struct Dyn; 2017 Feb; 35(3):669-682. PubMed ID: 26886480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine-Mimicking Derivatives of 3-Aminopyrazine-2-Carboxamide: Towards Inhibitors of Prolyl-tRNA Synthetase with Antimycobacterial Activity.
    Pallabothula VSK; Kerda M; Juhás M; Janďourek O; Konečná K; Bárta P; Paterová P; Zitko J
    Biomolecules; 2022 Oct; 12(11):. PubMed ID: 36358911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase.
    Beuning PJ; Musier-Forsyth K
    J Biol Chem; 2001 Aug; 276(33):30779-85. PubMed ID: 11408489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer RNA modulates the editing mechanism used by class II prolyl-tRNA synthetase.
    Splan KE; Ignatov ME; Musier-Forsyth K
    J Biol Chem; 2008 Mar; 283(11):7128-34. PubMed ID: 18180290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of pyrimidine substituted aminoacyl-sulfamoyl nucleosides as potential inhibitors targeting class I aminoacyl-tRNA synthetases.
    Nautiyal M; De Graef S; Pang L; Gadakh B; Strelkov SV; Weeks SD; Van Aerschot A
    Eur J Med Chem; 2019 Jul; 173():154-166. PubMed ID: 30995568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.