These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 36394950)
1. Switching Amine Oxidation from Imines to Nitriles by Carbon-Hydrogen Bond Activation via Strong Base Modified Strategy. Zhu G; Shi S; Feng X; Zhao L; Wang Y; Cao J; Gao J; Xu J ACS Appl Mater Interfaces; 2022 Nov; 14(47):52758-52765. PubMed ID: 36394950 [TBL] [Abstract][Full Text] [Related]
2. Catalytic Hydrogen Production by Ruthenium Complexes from the Conversion of Primary Amines to Nitriles: Potential Application as a Liquid Organic Hydrogen Carrier. Ventura-Espinosa D; Marzá-Beltrán A; Mata JA Chemistry; 2016 Dec; 22(49):17758-17766. PubMed ID: 27862376 [TBL] [Abstract][Full Text] [Related]
3. Ruthenium Supported on High-Surface-Area Zirconia as an Efficient Catalyst for the Base-Free Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Pichler CM; Al-Shaal MG; Gu D; Joshi H; Ciptonugroho W; Schüth F ChemSusChem; 2018 Jul; 11(13):2083-2090. PubMed ID: 29761659 [TBL] [Abstract][Full Text] [Related]
4. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system. Samec JS; Ell AH; Bäckvall JE Chemistry; 2005 Apr; 11(8):2327-34. PubMed ID: 15706621 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, spectral and catalytic dehydrogenation studies of ruthenium complexes containing NO bidentate ligands. Shoair AF; El-Bindary AA Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():490-6. PubMed ID: 24840490 [TBL] [Abstract][Full Text] [Related]
6. Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane. Tonbul Y; Akbayrak S; Özkar S J Colloid Interface Sci; 2018 Mar; 513():287-294. PubMed ID: 29156236 [TBL] [Abstract][Full Text] [Related]
7. Catalytic N-H Bond Formation Promoted by a Ruthenium Hydride Complex Bearing a Redox-Active Pyrimidine-Imine Ligand. Kim S; Kim J; Zhong H; Panetti GB; Chirik PJ J Am Chem Soc; 2022 Nov; 144(45):20661-20671. PubMed ID: 36326751 [TBL] [Abstract][Full Text] [Related]
8. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface. Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789 [TBL] [Abstract][Full Text] [Related]
9. Oxidative dehydrogenation of n-butane over magnesium vanadate nano-catalysts supported on magnesia-zirconia: effect of vanadium content. Lee JK; Hong UG; Yoo Y; Cho YJ; Lee J; Chang H; Song IK J Nanosci Nanotechnol; 2013 Dec; 13(12):8110-5. PubMed ID: 24266201 [TBL] [Abstract][Full Text] [Related]
10. Easy Ruthenium-Catalysed Oxidation of Primary Amines to Nitriles under Oxidant-Free Conditions. Achard T; Egly J; Sigrist M; Maisse-François A; Bellemin-Laponnaz S Chemistry; 2019 Oct; 25(58):13271-13274. PubMed ID: 31287194 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic study of hydrogen transfer to imines from a hydroxycyclopentadienyl ruthenium hydride. Experimental support for a mechanism involving coordination of imine to ruthenium prior to hydrogen transfer. Samec JS; Ell AH; Aberg JB; Privalov T; Eriksson L; Bäckvall JE J Am Chem Soc; 2006 Nov; 128(44):14293-305. PubMed ID: 17076502 [TBL] [Abstract][Full Text] [Related]
12. Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp3 C-H bond activation and carbon-carbon bond formation. Murahashi S; Nakae T; Terai H; Komiya N J Am Chem Soc; 2008 Aug; 130(33):11005-12. PubMed ID: 18646852 [TBL] [Abstract][Full Text] [Related]
14. Visible-Light-Driven Oxidation of Amines to Imines in Air Catalyzed by Polyoxometalate-Tris(bipyridine)ruthenium Hybrid Compounds. An H; Luo H; Xu T; Chang S; Chen Y; Zhu Q; Huang Y; Tan H; Li YG Inorg Chem; 2022 Jul; 61(27):10442-10453. PubMed ID: 35758283 [TBL] [Abstract][Full Text] [Related]
15. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction. Sharma PK; De Visser SP; Ogliaro F; Shaik S J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559 [TBL] [Abstract][Full Text] [Related]
16. Heterophase-structured nanocrystals as superior supports for Ru-based catalysts in selective hydrogenation of benzene. Peng Z; Liu X; Li S; Li Z; Li B; Liu Z; Liu S Sci Rep; 2017 Jan; 7():39847. PubMed ID: 28057914 [TBL] [Abstract][Full Text] [Related]
17. Aprotic Amine-modified Manganese Dioxide Catalysts for Selectivity-tunable Oxidation of Amines. Hao Q; Jia X; Ma J; Gao M; Fan X; Gao J; Xu J Chem Asian J; 2021 Jun; 16(11):1388-1391. PubMed ID: 33855808 [TBL] [Abstract][Full Text] [Related]
18. Highly Efficient Catalysts of Bimetallic Pt-Ru Nanocrystals Supported on Ordered ZrO Wang M; Chen D; Li N; Xu Q; Li H; He J; Lu J ACS Appl Mater Interfaces; 2020 Mar; 12(12):13781-13789. PubMed ID: 32093474 [TBL] [Abstract][Full Text] [Related]
19. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study. So MH; Liu Y; Ho CM; Che CM Chem Asian J; 2009 Oct; 4(10):1551-61. PubMed ID: 19777526 [TBL] [Abstract][Full Text] [Related]