These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36394985)

  • 1. Exceptionally Enhanced Thermal Conductivity of Aluminum Driven by Extreme Pressures: A First-Principles Study.
    Giri A; Karna P; Hopkins PE
    J Phys Chem Lett; 2022 Dec; 13(47):10918-10923. PubMed ID: 36394985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-electron scattering limits thermal conductivity of metals under extremely high electron temperatures.
    Karna P; Giri A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38740071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Electronic Thermal Conductivity of Graphene.
    Kim TY; Park CH; Marzari N
    Nano Lett; 2016 Apr; 16(4):2439-43. PubMed ID: 26907524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High In-Plane Thermal Conductivity of Aluminum Nitride Thin Films.
    Hoque MSB; Koh YR; Braun JL; Mamun A; Liu Z; Huynh K; Liao ME; Hussain K; Cheng Z; Hoglund ER; Olson DH; Tomko JA; Aryana K; Galib R; Gaskins JT; Elahi MMM; Leseman ZC; Howe JM; Luo T; Graham S; Goorsky MS; Khan A; Hopkins PE
    ACS Nano; 2021 Jun; 15(6):9588-9599. PubMed ID: 33908771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond?
    Lindsay L; Broido DA; Reinecke TL
    Phys Rev Lett; 2013 Jul; 111(2):025901. PubMed ID: 23889420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure-enabled phonon engineering in metals.
    Lanzillo NA; Thomas JB; Watson B; Washington M; Nayak SK
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8712-6. PubMed ID: 24889627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk-like Intrinsic Phonon Thermal Conductivity of Micrometer-Thick AlN Films.
    Koh YR; Cheng Z; Mamun A; Bin Hoque MS; Liu Z; Bai T; Hussain K; Liao ME; Li R; Gaskins JT; Giri A; Tomko J; Braun JL; Gaevski M; Lee E; Yates L; Goorsky MS; Luo T; Khan A; Graham S; Hopkins PE
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29443-29450. PubMed ID: 32491824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous thermal transport under high pressure in boron arsenide.
    Li S; Qin Z; Wu H; Li M; Kunz M; Alatas A; Kavner A; Hu Y
    Nature; 2022 Dec; 612(7940):459-464. PubMed ID: 36418403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polar effects on the thermal conductivity of cubic boron nitride under pressure.
    Mukhopadhyay S; Stewart DA
    Phys Rev Lett; 2014 Jul; 113(2):025901. PubMed ID: 25062211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.
    Kang JS; Wu H; Hu Y
    Nano Lett; 2017 Dec; 17(12):7507-7514. PubMed ID: 29115845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphism of bulk boron nitride.
    Cazorla C; Gould T
    Sci Adv; 2019 Jan; 5(1):eaau5832. PubMed ID: 30746453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High thermal conductivity driven by the unusual phonon relaxation time platform in 2D monolayer boron arsenide.
    Hu Y; Li D; Yin Y; Li S; Zhou H; Zhang G
    RSC Adv; 2020 Jun; 10(42):25305-25310. PubMed ID: 35517492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Conductivity Enhancement in MoS_{2} under Extreme Strain.
    Meng X; Pandey T; Jeong J; Fu S; Yang J; Chen K; Singh A; He F; Xu X; Zhou J; Hsieh WP; Singh AK; Lin JF; Wang Y
    Phys Rev Lett; 2019 Apr; 122(15):155901. PubMed ID: 31050539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Conductivity of β-Phase Ga
    Song Y; Ranga P; Zhang Y; Feng Z; Huang HL; Santia MD; Badescu SC; Gonzalez-Valle CU; Perez C; Ferri K; Lavelle RM; Snyder DW; Klein BA; Deitz J; Baca AG; Maria JP; Ramos-Alvarado B; Hwang J; Zhao H; Wang X; Krishnamoorthy S; Foley BM; Choi S
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38477-38490. PubMed ID: 34370459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-momentum excitons and the role of electron-phonon couplings in the electronic and phonon transport properties of boron arsenide.
    Mei H; Xia Y; Zhang Y; Wu Y; Chen Y; Ma C; Kong M; Peng L; Zhu H; Zhang H
    Phys Chem Chem Phys; 2022 Apr; 24(16):9384-9393. PubMed ID: 35383793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropy-Driven High Thermal Conductivity in Stretchable Poly(vinyl alcohol)/Hexagonal Boron Nitride Nanohybrid Films.
    Kwon OH; Ha T; Kim DG; Kim BG; Kim YS; Shin TJ; Koh WG; Lim HS; Yoo Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34625-34633. PubMed ID: 30216038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and transport properties of semimetal ZrBeSi crystal: a first-principles study.
    Li YH; Zhang T; Zeng ZY; Chen XR; Geng HY
    J Phys Condens Matter; 2022 Oct; 34(49):. PubMed ID: 36191591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The exceptionally high thermal conductivity after 'alloying' two-dimensional gallium nitride (GaN) and aluminum nitride (AlN).
    Wang H; Wei D; Duan J; Qin Z; Qin G; Yao Y; Hu M
    Nanotechnology; 2021 Mar; 32(13):135401. PubMed ID: 33296877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study.
    Liao B; Qiu B; Zhou J; Huberman S; Esfarjani K; Chen G
    Phys Rev Lett; 2015 Mar; 114(11):115901. PubMed ID: 25839292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental observation of high thermal conductivity in boron arsenide.
    Kang JS; Li M; Wu H; Nguyen H; Hu Y
    Science; 2018 Aug; 361(6402):575-578. PubMed ID: 29976798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.