These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36394989)

  • 1. Discovery of Salt Hydrates for Thermal Energy Storage.
    Kiyabu S; Girard P; Siegel DJ
    J Am Chem Soc; 2022 Nov; 144(47):21617-21627. PubMed ID: 36394989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Energy Storage (TES) Prototype Based on Geopolymer Concrete for High-Temperature Applications.
    Rahjoo M; Goracci G; Gaitero JJ; Martauz P; Rojas E; Dolado JS
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corn Cobs' Biochar as Green Host of Salt Hydrates for Enhancing the Water Sorption Kinetics in Thermochemical Heat Storage Systems.
    Nguyen MH; Zbair M; Dutournié P; Limousy L; Bennici S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of porous carbon materials on heat storage performance of CaCl
    Gao N; Deng L; Li J; Zeng T; Huang H; Kobayashi N; Kubota M; Yang X
    RSC Adv; 2023 Oct; 13(46):32567-32581. PubMed ID: 37936641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DFT based equilibrium study on the hydrolysis and the dehydration reactions of MgCl2 hydrates.
    Smeets B; Iype E; Nedea SV; Zondag HA; Rindt CC
    J Chem Phys; 2013 Sep; 139(12):124312. PubMed ID: 24089772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials.
    Carrillo AJ; González-Aguilar J; Romero M; Coronado JM
    Chem Rev; 2019 Apr; 119(7):4777-4816. PubMed ID: 30869873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophysical Property Measurements of Tetrabutylphosphonium Oxalate (TBPOx) Ionic Semiclathrate Hydrate as a Media for the Thermal Energy Storage System.
    Miyamoto T; Koyama R; Kurokawa N; Hotta A; Alavi S; Ohmura R
    Front Chem; 2020; 8():547. PubMed ID: 32766205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc Nitrate Hexahydrate Pseudobinary Eutectics for Near-Room-Temperature Thermal Energy Storage.
    Ahmed S; Ibbotson D; Somodi C; Shamberger PJ
    ACS Appl Eng Mater; 2024 Mar; 2(3):530-541. PubMed ID: 38544948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printing Composites with Salt Hydrate Phase Change Materials for Thermal Energy Storage.
    Lak SN; Hsieh CM; AlMahbobi L; Wang Y; Chakraborty A; Yu C; Pentzer EB
    ACS Appl Eng Mater; 2023 Aug; 1(8):2279-2287. PubMed ID: 38356854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermochemical energy storage performance of zinc destabilized calcium hydride at high-temperatures.
    Balakrishnan S; Sofianos MV; Humphries TD; Paskevicius M; Buckley CE
    Phys Chem Chem Phys; 2020 Nov; 22(44):25780-25788. PubMed ID: 33150339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2E (energy and exergy) analysis of solar evacuated tube-compound parabolic concentrator with different configurations of thermal energy storage system.
    Christopher SS; Kumaresan V
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):61135-61147. PubMed ID: 35437656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl₂ hydrates and MgCl₂ hydrates for seasonal heat storage.
    Pathak AD; Nedea S; Zondag H; Rindt C; Smeulders D
    Phys Chem Chem Phys; 2016 Apr; 18(15):10059-69. PubMed ID: 27004734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Potential Environmental and Social Influence of the Inorganic Salt Hydrates Used as a Phase Change Material for Thermal Energy Storage in Solar Installations.
    Nartowska E; Styś-Maniara M; Kozłowski T
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36674088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and Supercooling Modification of Salt Hydrate Phase Change Materials Based on CaCl₂·2H₂O/CaCl₂.
    Xu X; Dong Z; Memon SA; Bao X; Cui H
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TES Nanoemulsions: A Review of Thermophysical Properties and Their Impact on System Design.
    Iacob-Tudose ET; Mamaliga I; Iosub AV
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Principles Study of Chemical Mixtures of CaCl
    Pathak AD; Tranca I; Nedea SV; Zondag HA; Rindt CCM; Smeulders DMJ
    J Phys Chem C Nanomater Interfaces; 2017 Sep; 121(38):20576-20590. PubMed ID: 28983386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent Wood for Thermal Energy Storage and Reversible Optical Transmittance.
    Montanari C; Li Y; Chen H; Yan M; Berglund LA
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20465-20472. PubMed ID: 31062954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of parabolic solar cookers with thermal energy storage.
    Lentswe K; Mawire A; Owusu P; Shobo A
    Heliyon; 2021 Oct; 7(10):e08226. PubMed ID: 34746474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Accelerated Discovery of Promising Thermal Energy Storage Materials with High Heat Capacity.
    Ojih J; Onyekpe U; Rodriguez A; Hu J; Peng C; Hu M
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43277-43289. PubMed ID: 36106746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of Basalt Glasses as High-Temperature Sensible Heat Storage Materials.
    Liu J; Chang Z; Wang L; Xu J; Kuang R; Wu Z
    ACS Omega; 2020 Aug; 5(30):19236-19246. PubMed ID: 32775927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.