These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36395358)
1. Adsorption of PFAAs in the Vadose Zone and Implications for Long-Term Groundwater Contamination. Gnesda WR; Draxler EF; Tinjum J; Zahasky C Environ Sci Technol; 2022 Dec; 56(23):16748-16758. PubMed ID: 36395358 [TBL] [Abstract][Full Text] [Related]
2. Air-water interfacial collapse and rate-limited solid desorption control Perfluoroalkyl acid leaching from the vadose zone. Stults JF; Schaefer CE; Fang Y; Devon J; Nguyen D; Real I; Hao S; Guelfo JL J Contam Hydrol; 2024 Jul; 265():104382. PubMed ID: 38861839 [TBL] [Abstract][Full Text] [Related]
3. Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions. Wallis I; Hutson J; Davis G; Kookana R; Rayner J; Prommer H Water Res; 2022 Oct; 225():119096. PubMed ID: 36162294 [TBL] [Abstract][Full Text] [Related]
4. Evaluating air-water and NAPL-water interfacial adsorption and retention of Perfluorocarboxylic acids within the Vadose zone. Silva JAK; Martin WA; Johnson JL; McCray JE J Contam Hydrol; 2019 Jun; 223():103472. PubMed ID: 30979513 [TBL] [Abstract][Full Text] [Related]
5. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system. Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489 [TBL] [Abstract][Full Text] [Related]
6. Simulated leaching of PFAS from land-applied municipal biosolids at agricultural sites. Silva JAK; Guelfo JL; Šimůnek J; McCray JE J Contam Hydrol; 2022 Dec; 251():104089. PubMed ID: 36223689 [TBL] [Abstract][Full Text] [Related]
7. Perfluoroalkyl acids on suspended particles: Significant transport pathways in surface runoff, surface waters, and subsurface soils. Borthakur A; Wang M; He M; Ascencio K; Blotevogel J; Adamson DT; Mahendra S; Mohanty SK J Hazard Mater; 2021 Sep; 417():126159. PubMed ID: 34229412 [TBL] [Abstract][Full Text] [Related]
8. A Mathematical Model for the Release, Transport, and Retention of Per- and Polyfluoroalkyl Substances (PFAS) in the Vadose Zone. Guo B; Zeng J; Brusseau ML Water Resour Res; 2020 Feb; 56(2):. PubMed ID: 33223573 [TBL] [Abstract][Full Text] [Related]
9. Experimental and modeling of the unsaturated transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids. Sidoli P; Lassabatere L; Angulo-Jaramillo R; Baran N J Contam Hydrol; 2016 Jul; 190():1-14. PubMed ID: 27131475 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study. Oostrom M; Truex MJ; Last GV; Strickland CE; Tartakovsky GD J Contam Hydrol; 2016 Jun; 189():27-43. PubMed ID: 27107320 [TBL] [Abstract][Full Text] [Related]
11. Contaminant mobilization from the vadose zone to groundwater during experimental river flooding events. Sultana R; Johnson RH; Tigar AD; Wahl TJ; Meurer CE; Hoss KN; Xu S; Paradis CJ J Contam Hydrol; 2024 Jul; 265():104391. PubMed ID: 38936239 [TBL] [Abstract][Full Text] [Related]
12. Fate and transport of chlormequat in subsurface environments. Juhler RK; Henriksen T; Rosenbom AE; Kjaer J Environ Sci Pollut Res Int; 2010 Jul; 17(6):1245-56. PubMed ID: 20177799 [TBL] [Abstract][Full Text] [Related]
13. Air-water interfacial areas relevant for transport of per and poly-fluoroalkyl substances. Brusseau ML; Guo B Water Res; 2021 Dec; 207():117785. PubMed ID: 34731664 [TBL] [Abstract][Full Text] [Related]
14. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Brusseau ML Sci Total Environ; 2018 Feb; 613-614():176-185. PubMed ID: 28915454 [TBL] [Abstract][Full Text] [Related]
15. Quantify the effects of groundwater level recovery on groundwater nitrate dynamics through a quasi-3D integrated model for the vadose zone-groundwater coupled system. Zang Y; Hou X; Li Z; Li P; Sun Y; Yu B; Li M Water Res; 2022 Nov; 226():119213. PubMed ID: 36240711 [TBL] [Abstract][Full Text] [Related]
16. Analytical Model for Volatile Organic Compound Transport in the Coupled Vadose Zone-Groundwater System. Huang J J Hydrol Eng; 2021 Jan; 26(1):1-14. PubMed ID: 33628002 [TBL] [Abstract][Full Text] [Related]
17. The influence of solution chemistry on air-water interfacial adsorption and transport of PFOA in unsaturated porous media. Lyu Y; Brusseau ML Sci Total Environ; 2020 Apr; 713():136744. PubMed ID: 32019053 [TBL] [Abstract][Full Text] [Related]
18. Subsurface transport potential of perfluoroalkyl acids at aqueous film-forming foam (AFFF)-impacted sites. Guelfo JL; Higgins CP Environ Sci Technol; 2013 May; 47(9):4164-71. PubMed ID: 23566120 [TBL] [Abstract][Full Text] [Related]
19. Comparison of methods to estimate air-water interfacial areas for evaluating PFAS transport in the vadose zone. Silva JAK; Šimůnek J; McCray JE J Contam Hydrol; 2022 May; 247():103984. PubMed ID: 35279485 [TBL] [Abstract][Full Text] [Related]
20. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces. Brusseau ML; Guo B Chemosphere; 2022 Sep; 302():134938. PubMed ID: 35568214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]