BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36395718)

  • 1. Flavonol dioxygenase chemistry mediated by a synthetic nickel superoxide.
    Khamespanah F; Patel NM; Forney AK; Heitger DR; Amarasekarage CM; Springer LE; Belecki K; Lucas HR
    J Inorg Biochem; 2023 Jan; 238():112021. PubMed ID: 36395718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quercetinase QueD of Streptomyces sp. FLA, a monocupin dioxygenase with a preference for nickel and cobalt.
    Merkens H; Kappl R; Jakob RP; Schmid FX; Fetzner S
    Biochemistry; 2008 Nov; 47(46):12185-96. PubMed ID: 18950192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quercetin 2,4-Dioxygenase Activates Dioxygen in a Side-On O2-Ni Complex.
    Jeoung JH; Nianios D; Fetzner S; Dobbek H
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3281-4. PubMed ID: 26846734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of metal cofactors on the reactivity of quercetin 2,4-dioxygenase: synthetic model studies with M(II)-complexes (M = Mn, Co, Ni, Cu, Zn) and assessment of the regulatory factors in catalytic efficacy.
    Podder N; Mandal S
    Dalton Trans; 2022 Nov; 51(44):17064-17080. PubMed ID: 36314263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic dioxygenation of flavonol by M(II)-complexes (M = Mn, Fe, Co, Ni, Cu and Zn) - mimicking the M(II)-substituted quercetin 2,3-dioxygenase.
    Sun YJ; Huang QQ; Li P; Zhang JJ
    Dalton Trans; 2015 Aug; 44(31):13926-38. PubMed ID: 26153684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Behavior of Trispyrazolylborato-Metal(II)-Flavonolate Complexes as Functional Models for Bacterial Quercetinase-Assessment of the Metal Impact.
    Hoof S; Limberg C
    Inorg Chem; 2019 Oct; 58(19):12843-12853. PubMed ID: 31502453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A functional model for quercetin 2,4-dioxygenase: Geometric and electronic structures and reactivity of a nickel(II) flavonolate complex.
    Jeong D; Sun S; Moon D; Cho J
    J Inorg Biochem; 2022 Jan; 226():111632. PubMed ID: 34700128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A series of Ni(II)-flavonolate complexes as structural and functional ES (enzyme-substrate) models of the Ni(II)-containing quercetin 2,3-dioxygenase.
    Sun YJ; Huang QQ; Zhang JJ
    Dalton Trans; 2014 May; 43(17):6480-9. PubMed ID: 24622725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel quercetinase, a "promiscuous" metalloenzyme: metal incorporation and metal ligand substitution studies.
    Nianios D; Thierbach S; Steimer L; Lulchev P; Klostermeier D; Fetzner S
    BMC Biochem; 2015 Apr; 16():10. PubMed ID: 25903361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional analysis of the queD gene coding for quercetinase of Streptomyces sp. FLA.
    Merkens H; Fetzner S
    FEMS Microbiol Lett; 2008 Oct; 287(1):100-7. PubMed ID: 18681865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavonolate complexes of M(II) (M = Mn, Fe, Co, Ni, Cu, and Zn). Structural and functional models for the ES (enzyme-substrate) complex of quercetin 2,3-dioxygenase.
    Sun YJ; Huang QQ; Tano T; Itoh S
    Inorg Chem; 2013 Oct; 52(19):10936-48. PubMed ID: 24044415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The case for an oxidopyrylium intermediate in the mechanism of quercetin dioxygenases.
    Rymbai LD; Klausmeyer KK; Farmer PJ
    J Inorg Biochem; 2023 Oct; 247():112343. PubMed ID: 37549474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the chemoselectivity of nickel-dependent quercetin 2,4-dioxygenase.
    Wang WJ; Wei WJ; Liao RZ
    Phys Chem Chem Phys; 2018 Jun; 20(23):15784-15794. PubMed ID: 29869653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new monocupin quercetinase of Streptomyces sp. FLA: identification and heterologous expression of the queD gene and activity of the recombinant enzyme towards different flavonols.
    Merkens H; Sielker S; Rose K; Fetzner S
    Arch Microbiol; 2007 Jun; 187(6):475-87. PubMed ID: 17516049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic enzyme.substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase.
    Steiner RA; Kalk KH; Dijkstra BW
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16625-30. PubMed ID: 12486225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aliphatic carbon-carbon bond cleavage reactivity of a mononuclear Ni(II) cis-beta-keto-enolate complex in the presence of base and O2: a model reaction for acireductone dioxygenase (ARD).
    Szajna E; Arif AM; Berreau LM
    J Am Chem Soc; 2005 Dec; 127(49):17186-7. PubMed ID: 16332057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic studies of the O2-dependent aliphatic carbon-carbon bond cleavage reaction of a nickel enolate complex.
    Berreau LM; Borowski T; Grubel K; Allpress CJ; Wikstrom JP; Germain ME; Rybak-Akimova EV; Tierney DL
    Inorg Chem; 2011 Feb; 50(3):1047-57. PubMed ID: 21222442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygenolysis of a series of copper(II)-flavonolate adducts varying the electronic factors on supporting ligands as a mimic of quercetin 2,4-dioxygenase-like activity.
    Podder N; Dey S; Anoop A; Mandal S
    Dalton Trans; 2022 Mar; 51(11):4338-4353. PubMed ID: 35191437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and spectroscopic studies on the quercetin 2,3-dioxygenase from Bacillus subtilis.
    Schaab MR; Barney BM; Francisco WA
    Biochemistry; 2006 Jan; 45(3):1009-16. PubMed ID: 16411777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dioxygenase-like reactivity of an isolable superoxo-nickel(II) complex.
    Company A; Yao S; Ray K; Driess M
    Chemistry; 2010 Aug; 16(31):9669-75. PubMed ID: 20645352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.