These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 36395770)
1. Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection. Mayo-Muñoz D; Smith LM; Garcia-Doval C; Malone LM; Harding KR; Jackson SA; Hampton HG; Fagerlund RD; Gumy LF; Fineran PC Mol Cell; 2022 Dec; 82(23):4471-4486.e9. PubMed ID: 36395770 [TBL] [Abstract][Full Text] [Related]
2. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Malone LM; Warring SL; Jackson SA; Warnecke C; Gardner PP; Gumy LF; Fineran PC Nat Microbiol; 2020 Jan; 5(1):48-55. PubMed ID: 31819217 [TBL] [Abstract][Full Text] [Related]
3. Exploring pangenomic diversity and CRISPR-Cas evasion potential in jumbo phages: a comparative genomics study. Magar S; Kolte V; Sharma G; Govindarajan S Microbiol Spectr; 2024 Oct; 12(10):e0420023. PubMed ID: 39264185 [TBL] [Abstract][Full Text] [Related]
5. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Mendoza SD; Nieweglowska ES; Govindarajan S; Leon LM; Berry JD; Tiwari A; Chaikeeratisak V; Pogliano J; Agard DA; Bondy-Denomy J Nature; 2020 Jan; 577(7789):244-248. PubMed ID: 31819262 [TBL] [Abstract][Full Text] [Related]
6. Type I-F CRISPR-Cas resistance against virulent phages results in abortive infection and provides population-level immunity. Watson BNJ; Vercoe RB; Salmond GPC; Westra ER; Staals RHJ; Fineran PC Nat Commun; 2019 Dec; 10(1):5526. PubMed ID: 31797922 [TBL] [Abstract][Full Text] [Related]
7. A phage nucleus-associated RNA-binding protein is required for jumbo phage infection. Enustun E; Armbruster EG; Lee J; Zhang S; Yee BA; Malukhina K; Gu Y; Deep A; Naritomi JT; Liang Q; Aigner S; Adler BA; Cress BF; Doudna JA; Chaikeeratisak V; Cleveland DW; Ghassemian M; Bintu B; Yeo GW; Pogliano J; Corbett KD Nucleic Acids Res; 2024 May; 52(8):4440-4455. PubMed ID: 38554115 [TBL] [Abstract][Full Text] [Related]
8. The Phage Nucleus and PhuZ Spindle: Defining Features of the Subcellular Organization and Speciation of Nucleus-Forming Jumbo Phages. Chaikeeratisak V; Birkholz EA; Pogliano J Front Microbiol; 2021; 12():641317. PubMed ID: 34326818 [TBL] [Abstract][Full Text] [Related]
9. Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity. Jiang W; Samai P; Marraffini LA Cell; 2016 Feb; 164(4):710-21. PubMed ID: 26853474 [TBL] [Abstract][Full Text] [Related]
10. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. M Iyer L; Anantharaman V; Krishnan A; Burroughs AM; Aravind L Viruses; 2021 Jan; 13(1):. PubMed ID: 33466489 [TBL] [Abstract][Full Text] [Related]
11. Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease Mediating Bacteriophage Immunity. Lau RK; Ye Q; Birkholz EA; Berg KR; Patel L; Mathews IT; Watrous JD; Ego K; Whiteley AT; Lowey B; Mekalanos JJ; Kranzusch PJ; Jain M; Pogliano J; Corbett KD Mol Cell; 2020 Feb; 77(4):723-733.e6. PubMed ID: 31932164 [TBL] [Abstract][Full Text] [Related]
12. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System. Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR mBio; 2021 Mar; 12(2):. PubMed ID: 33785624 [TBL] [Abstract][Full Text] [Related]
13. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity. Maniv I; Jiang W; Bikard D; Marraffini LA J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the CRISPR-Cas system in bacteriophages active on epidemic strains of Vibrio cholerae in Bangladesh. Naser IB; Hoque MM; Nahid MA; Tareq TM; Rocky MK; Faruque SM Sci Rep; 2017 Nov; 7(1):14880. PubMed ID: 29093571 [TBL] [Abstract][Full Text] [Related]
16. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems. Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767 [TBL] [Abstract][Full Text] [Related]
17. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies. Strotskaya A; Savitskaya E; Metlitskaya A; Morozova N; Datsenko KA; Semenova E; Severinov K Nucleic Acids Res; 2017 Feb; 45(4):1946-1957. PubMed ID: 28130424 [TBL] [Abstract][Full Text] [Related]
18. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response. Maguin P; Varble A; Modell JW; Marraffini LA Mol Cell; 2022 Mar; 82(5):907-919.e7. PubMed ID: 35134339 [TBL] [Abstract][Full Text] [Related]
19. Critical roles for 'housekeeping' nucleases in type III CRISPR-Cas immunity. Chou-Zheng L; Hatoum-Aslan A Elife; 2022 Dec; 11():. PubMed ID: 36479971 [TBL] [Abstract][Full Text] [Related]
20. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Meeske AJ; Nakandakari-Higa S; Marraffini LA Nature; 2019 Jun; 570(7760):241-245. PubMed ID: 31142834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]