These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36395857)

  • 1. Transcriptome analysis of changes in M. aeruginosa growth and microcystin production under low concentrations of ethinyl estradiol.
    Ma Y; Yan F; An L; Shen W; Tang T; Li Z; Dai R
    Sci Total Environ; 2023 Feb; 859(Pt 2):160226. PubMed ID: 36395857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different nitrogen levels.
    Yang M; Wang X
    J Hazard Mater; 2019 May; 369():132-141. PubMed ID: 30776596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of changes in Microcystis aeruginosa growth and microcystin production by urea via transcriptomic surveys.
    Zhou Y; Zhang X; Li X; Jia P; Dai R
    Sci Total Environ; 2019 Mar; 655():181-187. PubMed ID: 30469064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.
    Chen L; Mao F; Kirumba GC; Jiang C; Manefield M; He Y
    Ecotoxicol Environ Saf; 2015 Dec; 122():126-35. PubMed ID: 26232039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional and Physiological Responses to Nutrient Loading on Toxin Formation and Photosynthesis in Microcystis Aeruginosa FACHB-905.
    Peng G; Lin S; Fan Z; Wang X
    Toxins (Basel); 2017 May; 9(5):. PubMed ID: 28513574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological, biochemical and transcriptional responses of cyanobacteria to environmentally relevant concentrations of a typical antibiotic-roxithromycin.
    Xin R; Yu X; Fan J
    Sci Total Environ; 2022 Mar; 814():152703. PubMed ID: 34973318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth, physiological responses and microcystin-production/-release dynamics of Microcystis aeruginosa exposed to various luteolin doses.
    Li J; Hu J; Cao L; Yuan Y
    Ecotoxicol Environ Saf; 2020 Jun; 196():110540. PubMed ID: 32251950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins.
    Shen F; Wang L; Zhou Q; Huang X
    Aquat Toxicol; 2018 Mar; 196():9-16. PubMed ID: 29324395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of CeO
    Zhao G; Wu D; Cao S; Du W; Yin Y; Guo H
    Bull Environ Contam Toxicol; 2020 Jun; 104(6):834-839. PubMed ID: 32306073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomic analysis reveals the toxicity mechanisms of bisphenol A on the Microcystis aeruginosa under different phosphorus levels.
    Yang M; Du D; Zhu F; Wang X
    Environ Pollut; 2024 Feb; 342():123022. PubMed ID: 38008252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis of the effect of bisphenol A exposure on the growth, photosynthetic activity and risk of microcystin-LR release by Microcystis aeruginosa.
    Yang M; Fan Z; Xie Y; Fang L; Wang X; Yuan Y; Li R
    J Hazard Mater; 2020 Oct; 397():122746. PubMed ID: 32473499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.
    Kramer BJ; Davis TW; Meyer KA; Rosen BH; Goleski JA; Dick GJ; Oh G; Gobler CJ
    PLoS One; 2018; 13(5):e0196278. PubMed ID: 29791446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different phosphorus levels.
    Yang M; Wang X
    Sci Total Environ; 2019 Mar; 658():439-448. PubMed ID: 30579201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between Photosynthetic Capacity and Microcystin Production in Toxic
    Wang X; Wang P; Wang C; Qian J; Feng T; Yang Y
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30205471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibiotics induced alterations in cell density, photosynthesis, microcystin synthesis and proteomic expression of Microcystis aeruginosa during CuSO
    Jiang Y; Liu Y; Zhang J
    Aquat Toxicol; 2020 May; 222():105473. PubMed ID: 32203795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glufosinate on the growth of and microcystin production by Microcystis aeruginosa at environmentally relevant concentrations.
    Zhang Q; Song Q; Wang C; Zhou C; Lu C; Zhao M
    Sci Total Environ; 2017 Jan; 575():513-518. PubMed ID: 27614857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa.
    Zhang M; Wang X; Tao J; Li S; Hao S; Zhu X; Hong Y
    Ecotoxicol Environ Saf; 2018 Aug; 157():134-142. PubMed ID: 29621704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Microcystis algicidal and microcystin synthesis inhibition by a red pigment prodigiosin.
    Wei J; Xie X; Huang F; Xiang L; Wang Y; Han T; Massey IY; Liang G; Pu Y; Yang F
    Environ Pollut; 2020 Jan; 256():113444. PubMed ID: 31676094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation.
    Zhou Y; Li X; Xia Q; Dai R
    Sci Total Environ; 2020 Jan; 700():134501. PubMed ID: 31689655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of a High-Efficient Algicidal Bacterium against
    Zhang H; Xie Y; Zhang R; Zhang Z; Hu X; Cheng Y; Geng R; Ma Z; Li R
    Toxins (Basel); 2023 Mar; 15(3):. PubMed ID: 36977111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.