These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 36395889)
1. Iron-calcium reinforced solidification of arsenic alkali residue in geopolymer composite: Wide pH stabilization and its mechanism. Sun Y; Zhang P; Li Z; Chen J; Ke Y; Hu J; Liu B; Yang J; Liang S; Su X; Hou H Chemosphere; 2023 Jan; 312(Pt 2):137063. PubMed ID: 36395889 [TBL] [Abstract][Full Text] [Related]
2. Stabilization treatment of arsenic-alkali residue (AAR): Effect of the coexisting soluble carbonate on arsenic stabilization. Wang X; Ding J; Wang L; Zhang S; Hou H; Zhang J; Chen J; Ma M; Tsang DCW; Wu X Environ Int; 2020 Feb; 135():105406. PubMed ID: 31864033 [TBL] [Abstract][Full Text] [Related]
3. Cotreatment of MSWI Fly Ash and Granulated Lead Smelting Slag Using a Geopolymer System. Liu DG; Ke Y; Min XB; Liang YJ; Wang ZB; Li YC; Fei JC; Yao LW; Xu H; Jiang GH Int J Environ Res Public Health; 2019 Jan; 16(1):. PubMed ID: 30626070 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies. Salihoglu G J Air Waste Manag Assoc; 2014 Nov; 64(11):1288-98. PubMed ID: 25509550 [TBL] [Abstract][Full Text] [Related]
5. Solidification/stabilization of highly toxic arsenic-alkali residue by MSWI fly ash-based cementitious material containing Friedel's salt: Efficiency and mechanism. Jiang G; Min X; Ke Y; Liang Y; Yan X; Xu W; Lin Z J Hazard Mater; 2022 Mar; 425():127992. PubMed ID: 34896713 [TBL] [Abstract][Full Text] [Related]
6. Waste solidification/stabilization of lead-zinc slag by utilizing fly ash based geopolymers. Li S; Huang X; Muhammad F; Yu L; Xia M; Zhao J; Jiao B; Shiau Y; Li D RSC Adv; 2018 Sep; 8(57):32956-32965. PubMed ID: 35547705 [TBL] [Abstract][Full Text] [Related]
7. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors. Guo X; Wang K; He M; Liu Z; Yang H; Li S J Environ Sci (China); 2014 Jul; 26(7):1549-56. PubMed ID: 25080005 [TBL] [Abstract][Full Text] [Related]
8. Red mud-metakaolin based cementitious material for remediation of arsenic pollution: Stabilization mechanism and leaching behavior of arsenic in lollingite. Zhou X; Zhang ZF; Yang H; Bao CJ; Wang JS; Sun YH; Liu DW; Shen PL; Su C J Environ Manage; 2021 Dec; 300():113715. PubMed ID: 34649326 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous stabilization/solidification of arsenic in acidic wastewater and tin mine tailings with synthetic multiple solid waste base geopolymer. Yang H; Zhengfu-Zhang ; Zhou X; Wang JS; Liu DW J Environ Manage; 2022 Oct; 320():115783. PubMed ID: 35940009 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment. Clancy TM; Snyder KV; Reddy R; Lanzirotti A; Amrose SE; Raskin L; Hayes KF J Hazard Mater; 2015 Dec; 300():522-529. PubMed ID: 26247378 [TBL] [Abstract][Full Text] [Related]
11. Characterisation of arsenic levels in acid-treated arsenic-containing sludge after steel slag-fly ash gel curing. Cao H; Wang J; Qi X Environ Technol; 2024 Mar; ():1-14. PubMed ID: 38471045 [TBL] [Abstract][Full Text] [Related]
12. Safe disposal of hazardous waste incineration fly ash: Stabilization/solidification of heavy metals and removal of soluble salts. Wei X; Xie F; Dong C; Wang P; Xu J; Yan F; Zhang Z J Environ Manage; 2022 Dec; 324():116246. PubMed ID: 36162320 [TBL] [Abstract][Full Text] [Related]
13. The Utilization of Alkali-Activated Lead-Zinc Smelting Slag for Chromite Ore Processing Residue Solidification/Stabilization. Yu L; Fang L; Zhang P; Zhao S; Jiao B; Li D Int J Environ Res Public Health; 2021 Sep; 18(19):. PubMed ID: 34639258 [TBL] [Abstract][Full Text] [Related]
14. The Solidification of Lead-Zinc Smelting Slag through Bentonite Supported Alkali-Activated Slag Cementitious Material. Mao Y; Muhammad F; Yu L; Xia M; Huang X; Jiao B; Shiau Y; Li D Int J Environ Res Public Health; 2019 Mar; 16(7):. PubMed ID: 30925811 [TBL] [Abstract][Full Text] [Related]
15. Codisposal of landfill leachate concentrate and antimony mine soils using a one-part geopolymer system for cationic and anionic heavy metals immobilization. Zhang H; Ji Z; Chen W; Pei Y J Hazard Mater; 2024 Feb; 464():132909. PubMed ID: 37979425 [TBL] [Abstract][Full Text] [Related]
16. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags. Zhang X; Sun Y; Ma Y; Ji W; Ren Y Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145 [TBL] [Abstract][Full Text] [Related]
17. Green rust functionalized geopolymer of composite cementitious materials and its application on treating chromate in a holistic system. Huang T; Zhang SW; Liu LF; Zhou L Chemosphere; 2021 Jan; 263():128319. PubMed ID: 33297252 [TBL] [Abstract][Full Text] [Related]
18. Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. Singh TS; Pant KK J Hazard Mater; 2006 Apr; 131(1-3):29-36. PubMed ID: 16271283 [TBL] [Abstract][Full Text] [Related]
19. Study on combined technology of glutathione reduction and alkali solidification of chromium-containing sludge. Zeng L; Zhang P; Li J; Yu Q; Zheng Y; Li D Ecotoxicol Environ Saf; 2022 Dec; 247():114221. PubMed ID: 36288638 [TBL] [Abstract][Full Text] [Related]
20. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Huang X; Zhuang R; Muhammad F; Yu L; Shiau Y; Li D Chemosphere; 2017 Feb; 168():300-308. PubMed ID: 27810528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]