BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 36395954)

  • 41. Targeting cuproplasia and cuproptosis in cancer.
    Tang D; Kroemer G; Kang R
    Nat Rev Clin Oncol; 2024 May; 21(5):370-388. PubMed ID: 38486054
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lactylation of METTL16 promotes cuproptosis via m
    Sun L; Zhang Y; Yang B; Sun S; Zhang P; Luo Z; Feng T; Cui Z; Zhu T; Li Y; Qiu Z; Fan G; Huang C
    Nat Commun; 2023 Oct; 14(1):6523. PubMed ID: 37863889
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Copper homeostasis and cuproptosis in tumor pathogenesis and therapeutic strategies.
    Bian C; Zheng Z; Su J; Chang S; Yu H; Bao J; Xin Y; Jiang X
    Front Pharmacol; 2023; 14():1271613. PubMed ID: 37767404
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The mechanism of copper transporters in ovarian cancer cells and the prospect of cuproptosis.
    Guo J; Sun Y; Liu G
    J Inorg Biochem; 2023 Oct; 247():112324. PubMed ID: 37481825
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomimetic gold nanocages incorporating copper-human serum albumin for tumor immunotherapy via cuproptosis-lactate regulation.
    Zafar H; Zhang J; Raza F; Pan X; Hu Z; Feng H; Shen Q
    J Control Release; 2024 Jun; 372():446-466. PubMed ID: 38917953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel insights into anticancer mechanisms of elesclomol: More than a prooxidant drug.
    Gao J; Wu X; Huang S; Zhao Z; He W; Song M
    Redox Biol; 2023 Nov; 67():102891. PubMed ID: 37734229
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CuO Nanozymes Catalyze Cysteine and Glutathione Depletion Induced Ferroptosis and Cuproptosis for Synergistic Tumor Therapy.
    Bai J; Zhang X; Zhao Z; Sun S; Cheng W; Yu H; Chang X; Wang B
    Small; 2024 May; ():e2400326. PubMed ID: 38813723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cuproptosis identifies respiratory subtype of renal cancer that confers favorable prognosis.
    Li K; Tan L; Li Y; Lyu Y; Zheng X; Jiang H; Zhang X; Wen H; Feng C
    Apoptosis; 2022 Dec; 27(11-12):1004-1014. PubMed ID: 36103026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of cuproptosis -related subtypes, the development of a prognosis model, and characterization of tumor microenvironment infiltration in prostate cancer.
    Jin L; Mei W; Liu X; Sun X; Xin S; Zhou Z; Zhang J; Zhang B; Chen P; Cai M; Ye L
    Front Immunol; 2022; 13():974034. PubMed ID: 36203594
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Designing salicylaldehyde isonicotinoyl hydrazones as Cu(II) ionophores with tunable chelation and release of copper for hitting redox Achilles heel of cancer cells.
    Ji Y; Dai F; Zhou B
    Free Radic Biol Med; 2018 Dec; 129():215-226. PubMed ID: 30240704
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Copper homeostasis and cuproptosis in mitochondria.
    Tian Z; Jiang S; Zhou J; Zhang W
    Life Sci; 2023 Dec; 334():122223. PubMed ID: 38084674
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cope with copper: From copper linked mechanisms to copper-based clinical cancer therapies.
    Wang X; Zhou M; Liu Y; Si Z
    Cancer Lett; 2023 May; 561():216157. PubMed ID: 37011869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Copper in colorectal cancer: From copper-related mechanisms to clinical cancer therapies.
    Wang Y; Pei P; Yang K; Guo L; Li Y
    Clin Transl Med; 2024 Jun; 14(6):e1724. PubMed ID: 38804588
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pan-cancer analysis of cuproptosis regulation patterns and identification of mTOR-target responder in clear cell renal cell carcinoma.
    Long S; Wang Y; Chen Y; Fang T; Yao Y; Fu K
    Biol Direct; 2022 Oct; 17(1):28. PubMed ID: 36209249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multifunctional nanomaterials
    Ye L; Yu C; Xia J; Ni K; Zhang Y; Ying X; Xie D; Jin Y; Sun R; Tang R; Fan S; Yao S
    Mater Today Bio; 2024 Apr; 25():100996. PubMed ID: 38420143
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer.
    Yang W; Wang Y; Huang Y; Yu J; Wang T; Li C; Yang L; Zhang P; Shi L; Yin Y; Tao K; Li R
    Biomed Pharmacother; 2023 Mar; 159():114301. PubMed ID: 36706634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cuproptosis in cancer: biological implications and therapeutic opportunities.
    Li L; Zhou H; Zhang C
    Cell Mol Biol Lett; 2024 Jun; 29(1):91. PubMed ID: 38918694
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel cuproptosis-related molecular pattern and its tumor microenvironment characterization in colorectal cancer.
    Zhu Z; Zhao Q; Song W; Weng J; Li S; Guo T; Zhu C; Xu Y
    Front Immunol; 2022; 13():940774. PubMed ID: 36248908
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploring cuproptosis as a mechanism and potential intervention target in cardiovascular diseases.
    Yang Y; Feng Q; Luan Y; Liu H; Jiao Y; Hao H; Yu B; Luan Y; Ren K
    Front Pharmacol; 2023; 14():1229297. PubMed ID: 37637426
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comprehensive analysis of cuproptosis-related genes and tumor microenvironment infiltration characterization in breast cancer.
    Song S; Zhang M; Xie P; Wang S; Wang Y
    Front Immunol; 2022; 13():978909. PubMed ID: 36341328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.