These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36396122)
1. Experimental and Modeling Study of Metal-Insulator Interfaces to Control the Electronic Transport in Single Nanowire Memristive Devices. Milano G; Miranda E; Fretto M; Valov I; Ricciardi C ACS Appl Mater Interfaces; 2022 Nov; 14(47):53027-53037. PubMed ID: 36396122 [TBL] [Abstract][Full Text] [Related]
2. Effect of electrode materials on resistive switching behaviour of NbO Leonetti G; Fretto M; Pirri FC; De Leo N; Valov I; Milano G Sci Rep; 2023 Oct; 13(1):17003. PubMed ID: 37813937 [TBL] [Abstract][Full Text] [Related]
3. Water-Mediated Ionic Migration in Memristive Nanowires with a Tunable Resistive Switching Mechanism. Milano G; Raffone F; Luebben M; Boarino L; Cicero G; Valov I; Ricciardi C ACS Appl Mater Interfaces; 2020 Oct; 12(43):48773-48780. PubMed ID: 33052645 [TBL] [Abstract][Full Text] [Related]
4. Junction properties of single ZnO nanowires with asymmetrical Pt and Cu contacts. Milano G; Boarino L; Ricciardi C Nanotechnology; 2019 Jun; 30(24):244001. PubMed ID: 30808016 [TBL] [Abstract][Full Text] [Related]
5. A New Approach to the Fabrication of Memristive Neuromorphic Devices: Compositionally Graded Films. Yoon JG Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825397 [TBL] [Abstract][Full Text] [Related]
6. Amorphous Boron Nitride Memristive Device for High-Density Memory and Neuromorphic Computing Applications. Khot AC; Dongale TD; Nirmal KA; Sung JH; Lee HJ; Nikam RD; Kim TG ACS Appl Mater Interfaces; 2022 Mar; 14(8):10546-10557. PubMed ID: 35179364 [TBL] [Abstract][Full Text] [Related]
7. Design of Materials Configuration for Optimizing Redox-Based Resistive Switching Memories. Chen S; Valov I Adv Mater; 2022 Jan; 34(3):e2105022. PubMed ID: 34695257 [TBL] [Abstract][Full Text] [Related]
8. Resistive switching and role of interfaces in memristive devices based on amorphous NbO Leonetti G; Fretto M; Bejtka K; Olivetti ES; Pirri FC; De Leo N; Valov I; Milano G Phys Chem Chem Phys; 2023 May; 25(21):14766-14777. PubMed ID: 37145117 [TBL] [Abstract][Full Text] [Related]
9. Interfacial redox processes in memristive devices based on valence change and electrochemical metallization. Liu K; Qin L; Zhang X; Zhu J; Sun X; Yang K; Cai Y; Yang Y; Huang R Faraday Discuss; 2019 Feb; 213(0):41-52. PubMed ID: 30357249 [TBL] [Abstract][Full Text] [Related]
10. An electrical characterisation methodology for identifying the switching mechanism in TiO Michalas L; Stathopoulos S; Khiat A; Prodromakis T Sci Rep; 2019 Jun; 9(1):8168. PubMed ID: 31160619 [TBL] [Abstract][Full Text] [Related]
11. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Baeumer C; Schmitz C; Marchewka A; Mueller DN; Valenta R; Hackl J; Raab N; Rogers SP; Khan MI; Nemsak S; Shim M; Menzel S; Schneider CM; Waser R; Dittmann R Nat Commun; 2016 Aug; 7():12398. PubMed ID: 27539213 [TBL] [Abstract][Full Text] [Related]
12. Graphene-Modified Interface Controls Transition from VCM to ECM Switching Modes in Ta/TaOx Based Memristive Devices. Lübben M; Karakolis P; Ioannou-Sougleridis V; Normand P; Dimitrakis P; Valov I Adv Mater; 2015 Oct; 27(40):6202-7. PubMed ID: 26456484 [TBL] [Abstract][Full Text] [Related]