These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36396642)

  • 1. Identification of purine biosynthesis as an NADH-sensing pathway to mediate energy stress.
    Yang R; Yang C; Ma L; Zhao Y; Guo Z; Niu J; Chu Q; Ma Y; Li B
    Nat Commun; 2022 Nov; 13(1):7031. PubMed ID: 36396642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetically encoded tool to increase cellular NADH/NAD
    Pan X; Heacock ML; Abdulaziz EN; Violante S; Zuckerman AL; Shrestha N; Yao C; Goodman RP; Cross JR; Cracan V
    Nat Chem Biol; 2024 May; 20(5):594-604. PubMed ID: 37884806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetically encoded tool for manipulation of NADP
    Cracan V; Titov DV; Shen H; Grabarek Z; Mootha VK
    Nat Chem Biol; 2017 Oct; 13(10):1088-1095. PubMed ID: 28805804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reduction of acetylpyridine adenine dinucleotide by NADH: is it a significant reaction of proton-translocating transhydrogenase, or an artefact?
    Stilwell SN; Bizouarn T; Jackson JB
    Biochim Biophys Acta; 1997 May; 1320(1):83-94. PubMed ID: 9186780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of hydride transfer during the reduction of 3-acetylpyridine adenine dinucleotide by NADH catalyzed by the pyridine nucleotide transhydrogenase of Escherichia coli.
    Bragg PD
    FEBS Lett; 1996 Nov; 397(1):93-6. PubMed ID: 8941721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of NADPH by submitochondrial particles from beef heart in complete absence of transhydrogenase activity from NADPH to NAD.
    Djavadi-Ohaniance L; Hatefi H
    J Biol Chem; 1975 Dec; 250(24):9397-403. PubMed ID: 395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Transhydrogenase as an additional site of energy accumulation in the E. coli respiratory chain].
    Chetkauskaite AV; Grinius LL
    Biokhimiia; 1979 Jun; 44(6):1101-9. PubMed ID: 37931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatic NADH reductive stress underlies common variation in metabolic traits.
    Goodman RP; Markhard AL; Shah H; Sharma R; Skinner OS; Clish CB; Deik A; Patgiri A; Hsu YH; Masia R; Noh HL; Suk S; Goldberger O; Hirschhorn JN; Yellen G; Kim JK; Mootha VK
    Nature; 2020 Jul; 583(7814):122-126. PubMed ID: 32461692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.
    Titov DV; Cracan V; Goodman RP; Peng J; Grabarek Z; Mootha VK
    Science; 2016 Apr; 352(6282):231-5. PubMed ID: 27124460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-linked mitochondrial pyridine nucleotide transhydrogenase of adult Hymenolepis diminuta.
    Fioravanti CF; McKelvey JR; Reisig JM
    J Parasitol; 1992 Oct; 78(5):774-8. PubMed ID: 1403417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences.
    Ying W
    Antioxid Redox Signal; 2008 Feb; 10(2):179-206. PubMed ID: 18020963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The involvement of NADP(H) binding and release in energy transduction by proton-translocating nicotinamide nucleotide transhydrogenase from Escherichia coli.
    Bizouarn T; Grimley RL; Cotton NP; Stilwell SN; Hutton M; Jackson JB
    Biochim Biophys Acta; 1995 Apr; 1229(1):49-58. PubMed ID: 7703263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression and biochemical characterization of soluble pyridine nucleotide transhydrogenase from Escherichia coli.
    Cao Z; Song P; Xu Q; Su R; Zhu G
    FEMS Microbiol Lett; 2011 Jul; 320(1):9-14. PubMed ID: 21545646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the interaction of NADH with proton pumping E. coli transhydrogenase reconstituted in the absence and in the presence of bacteriorhodopsin.
    Hu X; Zhang JW; Persson A; Rydström J
    Biochim Biophys Acta; 1995 Apr; 1229(1):64-72. PubMed ID: 7703264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of pyridine nucleotide redox status during oxidative challenge at normal and low-glucose states: implications for cellular adenosine triphosphate, mitochondrial respiratory activity, and reducing capacity in colon epithelial cells.
    Circu ML; Maloney RE; Aw TY
    Antioxid Redox Signal; 2011 Jun; 14(11):2151-62. PubMed ID: 21083422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient one-step production of (S)-1-phenyl-1,2-ethanediol from (R)-enantiomer plus NAD(+)-NADPH in-situ regeneration using engineered Escherichia coli.
    Zhang R; Xu Y; Xiao R; Zhang B; Wang L
    Microb Cell Fact; 2012 Dec; 11():167. PubMed ID: 23272948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool.
    Nissen TL; Anderlund M; Nielsen J; Villadsen J; Kielland-Brandt MC
    Yeast; 2001 Jan; 18(1):19-32. PubMed ID: 11124698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically encoded ATP and NAD(P)H biosensors: potential tools in metabolic engineering.
    Wang S; Jiang W; Jin X; Qi Q; Liang Q
    Crit Rev Biotechnol; 2023 Dec; 43(8):1211-1225. PubMed ID: 36130803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-transducing nicotinamide nucleotide transhydrogenase. Nucleotide binding properties of the purified enzyme and proteolytic fragments.
    Yamaguchi M; Hatefi Y
    J Biol Chem; 1993 Aug; 268(24):17871-7. PubMed ID: 8102370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in Escherichia coli: changes in enzyme levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H by Fe(III).
    Brumaghim JL; Li Y; Henle E; Linn S
    J Biol Chem; 2003 Oct; 278(43):42495-504. PubMed ID: 12913009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.