These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36396720)

  • 41. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.
    Nam H; Guinan JJ
    Hear Res; 2018 Feb; 358():1-9. PubMed ID: 29276975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Minimal basilar membrane motion in low-frequency hearing.
    Warren RL; Ramamoorthy S; Ciganović N; Zhang Y; Wilson TM; Petrie T; Wang RK; Jacques SL; Reichenbach T; Nuttall AL; Fridberger A
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4304-10. PubMed ID: 27407145
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Passive basilar membrane vibrations in gerbil neonates: mechanical bases of cochlear maturation.
    Overstreet EH; Temchin AN; Ruggero MA
    J Physiol; 2002 Nov; 545(1):279-88. PubMed ID: 12433967
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimal electrical properties of outer hair cells ensure cochlear amplification.
    Nam JH; Fettiplace R
    PLoS One; 2012; 7(11):e50572. PubMed ID: 23209783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low coherence interferometry of the cochlear partition.
    Choudhury N; Song G; Chen F; Matthews S; Tschinkel T; Zheng J; Jacques SL; Nuttall AL
    Hear Res; 2006 Oct; 220(1-2):1-9. PubMed ID: 16945496
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-frequency sensitivity of the mature gerbil cochlea and its development.
    Overstreet EH; Richter CP; Temchin AN; Cheatham MA; Ruggero MA
    Audiol Neurootol; 2003; 8(1):19-27. PubMed ID: 12566689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea.
    Ren T; Nuttall AL
    Hear Res; 2001 Jan; 151(1-2):48-60. PubMed ID: 11124451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cochlear motion across the reticular lamina implies that it is not a stiff plate.
    Cho NH; Puria S
    Sci Rep; 2022 Nov; 12(1):18715. PubMed ID: 36333415
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry.
    Mammano F; Ashmore JF
    Nature; 1993 Oct; 365(6449):838-41. PubMed ID: 8413667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The interplay between active hair bundle motility and electromotility in the cochlea.
    O Maoiléidigh D; Jülicher F
    J Acoust Soc Am; 2010 Sep; 128(3):1175-90. PubMed ID: 20815454
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane.
    Ruggero MA; Rich NC
    J Neurosci; 1991 Apr; 11(4):1057-67. PubMed ID: 2010805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrically evoked cubic distortion product otoacoustic emissions from gerbil cochlea.
    Ren T; Nuttall AL; Miller JM
    Hear Res; 1996 Dec; 102(1-2):43-50. PubMed ID: 8951449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A micromechanical model of the cochlea with radial movement of the tectorial membrane.
    Fukazawa T; Ishida K; Murai Y
    Hear Res; 1999 Nov; 137(1-2):59-67. PubMed ID: 10545634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea.
    Meaud J; Grosh K
    Biophys J; 2012 Mar; 102(6):1237-46. PubMed ID: 22455906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Active control of waves in a cochlear model with subpartitions.
    Chadwick RS; Dimitriadis EK; Iwasa KH
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2564-9. PubMed ID: 8637914
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
    Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stiffness of the gerbil basilar membrane: radial and longitudinal variations.
    Emadi G; Richter CP; Dallos P
    J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. What basilar-membrane tuning says about cochlear micromechanics.
    Zwislocki JJ; Kletsky EJ
    Am J Otolaryngol; 1982; 3(1):48-52. PubMed ID: 7114390
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The endocochlear potential alters cochlear micromechanics.
    Jacob S; Pienkowski M; Fridberger A
    Biophys J; 2011 Jun; 100(11):2586-94. PubMed ID: 21641303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae.
    Narayan SS; Temchin AN; Recio A; Ruggero MA
    Science; 1998 Dec; 282(5395):1882-4. PubMed ID: 9836636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.