These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Optimal electrical properties of outer hair cells ensure cochlear amplification. Nam JH; Fettiplace R PLoS One; 2012; 7(11):e50572. PubMed ID: 23209783 [TBL] [Abstract][Full Text] [Related]
45. Low coherence interferometry of the cochlear partition. Choudhury N; Song G; Chen F; Matthews S; Tschinkel T; Zheng J; Jacques SL; Nuttall AL Hear Res; 2006 Oct; 220(1-2):1-9. PubMed ID: 16945496 [TBL] [Abstract][Full Text] [Related]
46. High-frequency sensitivity of the mature gerbil cochlea and its development. Overstreet EH; Richter CP; Temchin AN; Cheatham MA; Ruggero MA Audiol Neurootol; 2003; 8(1):19-27. PubMed ID: 12566689 [TBL] [Abstract][Full Text] [Related]
47. Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea. Ren T; Nuttall AL Hear Res; 2001 Jan; 151(1-2):48-60. PubMed ID: 11124451 [TBL] [Abstract][Full Text] [Related]
48. Cochlear motion across the reticular lamina implies that it is not a stiff plate. Cho NH; Puria S Sci Rep; 2022 Nov; 12(1):18715. PubMed ID: 36333415 [TBL] [Abstract][Full Text] [Related]
49. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Mammano F; Ashmore JF Nature; 1993 Oct; 365(6449):838-41. PubMed ID: 8413667 [TBL] [Abstract][Full Text] [Related]
50. The interplay between active hair bundle motility and electromotility in the cochlea. O Maoiléidigh D; Jülicher F J Acoust Soc Am; 2010 Sep; 128(3):1175-90. PubMed ID: 20815454 [TBL] [Abstract][Full Text] [Related]
51. Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. Ruggero MA; Rich NC J Neurosci; 1991 Apr; 11(4):1057-67. PubMed ID: 2010805 [TBL] [Abstract][Full Text] [Related]
52. Electrically evoked cubic distortion product otoacoustic emissions from gerbil cochlea. Ren T; Nuttall AL; Miller JM Hear Res; 1996 Dec; 102(1-2):43-50. PubMed ID: 8951449 [TBL] [Abstract][Full Text] [Related]
53. A micromechanical model of the cochlea with radial movement of the tectorial membrane. Fukazawa T; Ishida K; Murai Y Hear Res; 1999 Nov; 137(1-2):59-67. PubMed ID: 10545634 [TBL] [Abstract][Full Text] [Related]
54. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea. Meaud J; Grosh K Biophys J; 2012 Mar; 102(6):1237-46. PubMed ID: 22455906 [TBL] [Abstract][Full Text] [Related]
55. Active control of waves in a cochlear model with subpartitions. Chadwick RS; Dimitriadis EK; Iwasa KH Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2564-9. PubMed ID: 8637914 [TBL] [Abstract][Full Text] [Related]
56. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536 [TBL] [Abstract][Full Text] [Related]
57. Stiffness of the gerbil basilar membrane: radial and longitudinal variations. Emadi G; Richter CP; Dallos P J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077 [TBL] [Abstract][Full Text] [Related]
58. What basilar-membrane tuning says about cochlear micromechanics. Zwislocki JJ; Kletsky EJ Am J Otolaryngol; 1982; 3(1):48-52. PubMed ID: 7114390 [TBL] [Abstract][Full Text] [Related]
59. The endocochlear potential alters cochlear micromechanics. Jacob S; Pienkowski M; Fridberger A Biophys J; 2011 Jun; 100(11):2586-94. PubMed ID: 21641303 [TBL] [Abstract][Full Text] [Related]
60. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Narayan SS; Temchin AN; Recio A; Ruggero MA Science; 1998 Dec; 282(5395):1882-4. PubMed ID: 9836636 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]