These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36396763)

  • 1. Analysis of temperature distribution over pipe surfaces of air-based cavity linear receiver for cross-linear concentration solar power system.
    Patel A; Soni A; Baredar P; Malviya R
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):28621-28639. PubMed ID: 36396763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferences on the effects of geometries and heat transfer fluids in multi-cavity solar receivers by using CFD.
    Duraisamy Ramalingam R; Esakkimuthu GS; Paulraj J; Abd Elnaby K; Athikesavan M; Sathyamurthy R; Vaithilingam S
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32205-32217. PubMed ID: 31823252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat losses in a trapezoidal cavity receiver of a linear Fresnel collector: A CFD approach.
    Alcalde-Morales S; Valenzuela L; Serrano-Aguilera JJ
    Heliyon; 2023 Aug; 9(8):e18692. PubMed ID: 37576326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy and exergy studies on the receiver models with materials and heat transfer fluids.
    Ramalingam RD; Esakkimuthu GS; Natarajan SK; Athikesavan MM
    Environ Sci Pollut Res Int; 2024 Jan; 31(3):4764-4778. PubMed ID: 38110680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of thermal efficiency on solar parabolic collectors using phase change materials - experimental and numerical study.
    Dhanapal B; Sathyamurthy R; Kabeel AE; Thakur AK
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):14719-14732. PubMed ID: 34618320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Investigation of High Temperature Application of Molten Solar Salt Nanofluid in a Direct Absorption Solar Collector.
    Karim MA; Arthur O; Yarlagadda PK; Islam M; Mahiuddin M
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30646577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational fluid dynamics-based parametric study on the performance of solar air heater channel.
    Burye NN; Sathyamurthy R; Rajagopal D
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):30321-30342. PubMed ID: 36434451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental thermal performance and enviroeconomic analysis of serpentine flow channeled flat plate solar water collector.
    Vengadesan E; Senthil R
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):17241-17259. PubMed ID: 34661837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water storage tank used as additional thermal energy for solar air heater.
    Semai H; Bouhdjar A
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):52692-52701. PubMed ID: 36847945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of different types of heat pipes in solar desalinations: A comprehensive review.
    Ben Bacha H; Nazari MA; Ullah N; Shah NA
    Water Sci Technol; 2024 Apr; 89(8):2044-2059. PubMed ID: 38678408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study of the thermal performance of heat storage-integrated solar receiver for parabolic dish collectors.
    Vishnu SK; Senthil R
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):76044-76059. PubMed ID: 37233932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal performance analysis of a flat-plate solar heater with zigzag-shaped pipe using fly ash-Cu hybrid nanofluid: CFD approach.
    Azimy N; Saffarian MR; Noghrehabadi A
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18100-18118. PubMed ID: 36520293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of Graphite-Dispersed Li
    Karim MA; Islam M; Arthur O; Yarlagadda PK
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe.
    Zhao S; Xu G; Wang N; Zhang X
    Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29382094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and optimization method of an indirectly irradiated solar receiver.
    Ndiogou BA; Thiam A; Mbow C; Adjibade MIS; Sambou V
    MethodsX; 2019; 6():43-55. PubMed ID: 30596028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of psychrometry on the performance of a solar collector.
    Dhaundiyal A; Gebremicheal GH
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):13445-13458. PubMed ID: 34595710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of thermo-hydraulic characteristics of solar cavity receiver under concentrated heat flux.
    Hao Y; Wang Y
    Sci Prog; 2020; 103(1):36850419875907. PubMed ID: 31829880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.
    Orbegoso EM; Saavedra R; Marcelo D; La Madrid R
    J Environ Manage; 2017 Dec; 203(Pt 3):1080-1094. PubMed ID: 28728972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on heat transfer enhancement of conventional and staggered fin solar air heater coated with CNT-black paint-an experimental approach.
    Madhu B; Kabeel AE; Sathyamurthy R; Sharshir SW; Manokar AM; Raghavendran PR; Chandrashekar T; Mageshbabu D
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32251-32269. PubMed ID: 31902081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental performance and economic analysis of finned solar receiver for parabolic dish solar collector.
    Vishnu SK; Senthil R
    Heliyon; 2023 Nov; 9(11):e21236. PubMed ID: 38027558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.