These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36396852)

  • 41. Dual-band refractometric terahertz biosensing with intense wave-matter-overlap microfluidic channel.
    Lan F; Luo F; Mazumder P; Yang Z; Meng L; Bao Z; Zhou J; Zhang Y; Liang S; Shi Z; Khan AR; Zhang Z; Wang L; Yin J; Zeng H
    Biomed Opt Express; 2019 Aug; 10(8):3789-3799. PubMed ID: 31452975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theoretical investigation of a five-band terahertz absorber based on an asymmetric split-ring resonator.
    Meng T; Hu D; Wang H; Zhang X; Tang Z
    Appl Opt; 2017 Dec; 56(34):9601-9605. PubMed ID: 29216079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Terahertz Broadband Absorber Based on a Combined Circular Disc Structure.
    Huang M; Wei K; Wu P; Xu D; Xu Y
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures.
    Lu Y; Li J; Zhang S; Sun J; Yao JQ
    Appl Opt; 2018 Jul; 57(21):6269-6275. PubMed ID: 30118008
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Machine learning assisted hepta band THz metamaterial absorber for biomedical applications.
    Jain P; Chhabra H; Chauhan U; Prakash K; Gupta A; Soliman MS; Islam MS; Islam MT
    Sci Rep; 2023 Jan; 13(1):1792. PubMed ID: 36720922
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design and Fabrication of Millimeter-Wave Frequency-Tunable Metamaterial Absorber Using MEMS Cantilever Actuators.
    Chung M; Jeong H; Kim YK; Lim S; Baek CW
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014276
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption.
    Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R
    Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide.
    Huang J; Li J; Yang Y; Li J; Li J; Zhang Y; Yao J
    Opt Express; 2020 Mar; 28(5):7018-7027. PubMed ID: 32225937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multispectral metamaterial absorber.
    Grant J; McCrindle IJ; Li C; Cumming DR
    Opt Lett; 2014 Mar; 39(5):1227-30. PubMed ID: 24690713
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultra-Broadband Tunable Terahertz Metamaterial Absorber Based on Double-Layer Vanadium Dioxide Square Ring Arrays.
    Zhang P; Chen G; Hou Z; Zhang Y; Shen J; Li C; Zhao M; Gao Z; Li Z; Tang T
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630136
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiband terahertz absorber and selective sensing performance.
    Wang Y; Cui Z; Zhu D; Wang X; Chen S; Nie P
    Opt Express; 2019 May; 27(10):14133-14143. PubMed ID: 31163866
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Broadband Terahertz Near-Perfect Absorbers.
    Cheng X; Huang R; Xu J; Xu X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33352-33360. PubMed ID: 32526137
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual-Band Perfect Metamaterial Absorber Based on an Asymmetric H-Shaped Structure for Terahertz Waves.
    Lu T; Zhang D; Qiu P; Lian J; Jing M; Yu B; Wen J; Zhuang S
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30404174
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graphene-Based THz Absorber with a Broad Band for Tuning the Absorption Rate and a Narrow Band for Tuning the Absorbing Frequency.
    Zhou Q; Liu P; Liu C; Zhou Y; Zha S
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31398824
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultra-Thin Multi-Band Polarization-Insensitive Microwave Metamaterial Absorber Based on Multiple-Order Responses Using a Single Resonator Structure.
    Cheng YZ; Cheng ZZ; Mao XS; Gong RZ
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29077036
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dual-band terahertz absorber based on square ring metamaterial structure.
    Wang D; Xu KD; Luo S; Cui Y; Zhang L; Liao Z; Cui J
    Opt Express; 2023 Feb; 31(4):5940-5950. PubMed ID: 36823863
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene.
    Chen Z; Chen J; Tang H; Shen T; Zhang H
    Opt Express; 2022 Feb; 30(5):6778-6785. PubMed ID: 35299456
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual-band tunable perfect metamaterial absorber based on graphene.
    Wang F; Huang S; Li L; Chen W; Xie Z
    Appl Opt; 2018 Aug; 57(24):6916-6922. PubMed ID: 30129577
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Polarization Independent Quasi-TEM Metamaterial Absorber for X and Ku Band Sensing Applications.
    Hoque A; Tariqul Islam M; Almutairi AF; Alam T; Jit Singh M; Amin N
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30513675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.