These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 36396866)
1. Potential of Lemna minor and Eichhornia crassipes for the phytoremediation of water contaminated with Nickel (II). Moreno-Rubio N; Ortega-Villamizar D; Marimon-Bolívar W; Bustillo-Lecompte C; Tejeda-Benítez LP Environ Monit Assess; 2022 Nov; 195(1):119. PubMed ID: 36396866 [TBL] [Abstract][Full Text] [Related]
2. Phytoremediation potential of Tabinda AB; Irfan R; Yasar A; Iqbal A; Mahmood A Environ Technol; 2020 May; 41(12):1514-1519. PubMed ID: 30355050 [TBL] [Abstract][Full Text] [Related]
3. Potential of four aquatic plant species to remove Vanhoudt N; Van Ginneken P; Nauts R; Van Hees M Environ Sci Pollut Res Int; 2018 Sep; 25(27):27187-27195. PubMed ID: 30027375 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation of synthetic textile dyes: biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. Ekanayake MS; Udayanga D; Wijesekara I; Manage P Environ Sci Pollut Res Int; 2021 Apr; 28(16):20476-20486. PubMed ID: 33410027 [TBL] [Abstract][Full Text] [Related]
5. Optimization of the phytoremediation conditions of wastewater in post-treatment by Ntakiyiruta P; Briton BGH; Nsavyimana G; Adouby K; Nahimana D; Ntakimazi G; Reinert L Environ Technol; 2022 May; 43(12):1805-1818. PubMed ID: 33198589 [TBL] [Abstract][Full Text] [Related]
6. Study of the accumulation of contaminants by Cyperus alternifolius, Lemna minor, Eichhornia crassipes, and Canna × generalis in some contaminated aquatic environments. Shirinpur-Valadi A; Hatamzadeh A; Sedaghathoor S Environ Sci Pollut Res Int; 2019 Jul; 26(21):21340-21350. PubMed ID: 31119548 [TBL] [Abstract][Full Text] [Related]
7. Treatment of textile effluents with Tabinda AB; Arif RA; Yasar A; Baqir M; Rasheed R; Mahmood A; Iqbal A Int J Phytoremediation; 2019; 21(10):939-943. PubMed ID: 31016996 [TBL] [Abstract][Full Text] [Related]
8. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Alvarado S; Guédez M; Lué-Merú MP; Nelson G; Alvaro A; Jesús AC; Gyula Z Bioresour Technol; 2008 Nov; 99(17):8436-40. PubMed ID: 18442903 [TBL] [Abstract][Full Text] [Related]
9. Can we use Cd-contaminated macrophytes for biogas production? Fernandes KD; Cañote SJB; Ribeiro EM; Thiago Filho GL; Fonseca AL Environ Sci Pollut Res Int; 2019 Sep; 26(27):27620-27630. PubMed ID: 29948672 [TBL] [Abstract][Full Text] [Related]
10. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). Victor KK; Séka Y; Norbert KK; Sanogo TA; Celestin AB Int J Phytoremediation; 2016 Oct; 18(10):949-55. PubMed ID: 27159271 [TBL] [Abstract][Full Text] [Related]
11. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity of the macrophytes Pistia stratiotes and Eichhornia crassipes to hexazinone and dissipation of this pesticide in aquatic ecosystems. Ribeiro VHV; Alencar BTB; Dos Santos NMC; da Costa VAM; Dos Santos JB; Francino DMT; Souza MF; Silva DV Ecotoxicol Environ Saf; 2019 Jan; 168():177-183. PubMed ID: 30388534 [TBL] [Abstract][Full Text] [Related]
13. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India. Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746 [TBL] [Abstract][Full Text] [Related]
14. Removal of fluoride contamination in water by three aquatic plants. Karmakar S; Mukherjee J; Mukherjee S Int J Phytoremediation; 2016; 18(3):222-7. PubMed ID: 26247406 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the Phytoremediation Potential of Hayyat MU; Nawaz R; Irfan A; Al-Hussain SA; Aziz M; Siddiq Z; Ahmad S; Zaki MEA Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36834207 [TBL] [Abstract][Full Text] [Related]
16. Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes--a case study at JK Paper mill, Rayagada, India. Mishra S; Mohanty M; Pradhan C; Patra HK; Das R; Sahoo S Environ Monit Assess; 2013 May; 185(5):4347-59. PubMed ID: 22993029 [TBL] [Abstract][Full Text] [Related]
17. Design of a sustainable development process between phytoremediation and production of bioethanol with Eichhornia crassipes. Sayago UFC Environ Monit Assess; 2019 Mar; 191(4):221. PubMed ID: 30877391 [TBL] [Abstract][Full Text] [Related]
18. Uptake of perfluoroalkyl substances PFOS and PFOA by free-floating hydrophytes Kenyon A; Masisak J; Satchwell M; Wu J; Newman L Int J Phytoremediation; 2024; 26(9):1429-1438. PubMed ID: 38584457 [TBL] [Abstract][Full Text] [Related]
19. Floating aquatic macrophytes for the treatment of aquaculture effluents. de Vasconcelos VM; de Morais ERC; Faustino SJB; Hernandez MCR; Gaudêncio HRDSC; de Melo RR; Bessa Junior AP Environ Sci Pollut Res Int; 2021 Jan; 28(3):2600-2607. PubMed ID: 33125679 [TBL] [Abstract][Full Text] [Related]
20. Assessment of phytokinetic removal of pollutants of paper mill effluent using water hyacinth (Eichhornia crassipes [Mart.] Solms). Kumar V; Singh J; Chopra AK Environ Technol; 2018 Nov; 39(21):2781-2791. PubMed ID: 28793843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]