These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36396977)

  • 1. Cortical regulation of two-stage rapid eye movement sleep.
    Dong Y; Li J; Zhou M; Du Y; Liu D
    Nat Neurosci; 2022 Dec; 25(12):1675-1682. PubMed ID: 36396977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological Evidence That the Retrosplenial Cortex Displays a Strong and Specific Activation Phased with Hippocampal Theta during Paradoxical (REM) Sleep.
    Koike BDV; Farias KS; Billwiller F; Almeida-Filho D; Libourel PA; Tiran-Cappello A; Parmentier R; Blanco W; Ribeiro S; Luppi PH; Queiroz CM
    J Neurosci; 2017 Aug; 37(33):8003-8013. PubMed ID: 28729438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. REM sleep is associated with distinct global cortical dynamics and controlled by occipital cortex.
    Wang Z; Fei X; Liu X; Wang Y; Hu Y; Peng W; Wang YW; Zhang S; Xu M
    Nat Commun; 2022 Nov; 13(1):6896. PubMed ID: 36371399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippocampus-retrosplenial cortex interaction is increased during phasic REM and contributes to memory consolidation.
    de Almeida-Filho DG; Koike BDV; Billwiller F; Farias KS; de Sales IRP; Luppi PH; Ribeiro S; Queiroz CM
    Sci Rep; 2021 Jun; 11(1):13078. PubMed ID: 34158548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep.
    Niethard N; Brodt S; Born J
    J Neurosci; 2021 May; 41(19):4212-4222. PubMed ID: 33833082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local Slow Waves in Superficial Layers of Primary Cortical Areas during REM Sleep.
    Funk CM; Honjoh S; Rodriguez AV; Cirelli C; Tononi G
    Curr Biol; 2016 Feb; 26(3):396-403. PubMed ID: 26804554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prefrontal cortical regulation of REM sleep.
    Hong J; Lozano DE; Beier KT; Chung S; Weber F
    Nat Neurosci; 2023 Oct; 26(10):1820-1832. PubMed ID: 37735498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A medullary hub for controlling REM sleep and pontine waves.
    Schott AL; Baik J; Chung S; Weber F
    Nat Commun; 2023 Jul; 14(1):3922. PubMed ID: 37400467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional variation in cholinergic terminal activity determines the non-uniform occurrence of cortical slow waves during REM sleep in mice.
    Nazari M; Karimi Abadchi J; Naghizadeh M; Bermudez-Contreras EJ; McNaughton BL; Tatsuno M; Mohajerani MH
    Cell Rep; 2023 May; 42(5):112450. PubMed ID: 37126447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basolateral Amygdala Regulates EEG Theta-activity During Rapid Eye Movement Sleep.
    Machida M; Sweeten BLW; Adkins AM; Wellman LL; Sanford LD
    Neuroscience; 2021 Aug; 468():176-185. PubMed ID: 34147563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prefrontal Cortical Regulation of REM Sleep.
    Weber F; Hong J; Lozano D; Beier K; Chung S
    Res Sq; 2023 Oct; ():. PubMed ID: 37886570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition.
    Niethard N; Hasegawa M; Itokazu T; Oyanedel CN; Born J; Sato TR
    Curr Biol; 2016 Oct; 26(20):2739-2749. PubMed ID: 27693142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.
    Funk CM; Peelman K; Bellesi M; Marshall W; Cirelli C; Tononi G
    J Neurosci; 2017 Sep; 37(38):9132-9148. PubMed ID: 28821651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Eye Movement Sleep Sawtooth Waves Are Associated with Widespread Cortical Activations.
    Frauscher B; von Ellenrieder N; Dolezalova I; Bouhadoun S; Gotman J; Peter-Derex L
    J Neurosci; 2020 Nov; 40(46):8900-8912. PubMed ID: 33055279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The subiculum sensitizes retrosplenial cortex layer 2/3 pyramidal neurons.
    Gao M; Noguchi A; Ikegaya Y
    J Physiol; 2021 Jun; 599(12):3151-3167. PubMed ID: 33878801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep.
    Montgomery SM; Sirota A; Buzsáki G
    J Neurosci; 2008 Jun; 28(26):6731-41. PubMed ID: 18579747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Rapid Eye Movement Sleep Shows Local Increases in Low-Frequency Oscillations and Global Decreases in High-Frequency Oscillations Compared to Resting Wakefulness.
    Baird B; Castelnovo A; Riedner BA; Lutz A; Ferrarelli F; Boly M; Davidson RJ; Tononi G
    eNeuro; 2018; 5(4):. PubMed ID: 30225358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy.
    Torterolo P; Castro-Zaballa S; Cavelli M; Chase MH; Falconi A
    Eur J Neurosci; 2016 Feb; 43(4):580-9. PubMed ID: 26670051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming.
    Maquet P; Péters J; Aerts J; Delfiore G; Degueldre C; Luxen A; Franck G
    Nature; 1996 Sep; 383(6596):163-6. PubMed ID: 8774879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct features of fast oscillations in phasic and tonic rapid eye movement sleep.
    Brankačk J; Scheffzük C; Kukushka VI; Vyssotski AL; Tort AB; Draguhn A
    J Sleep Res; 2012 Dec; 21(6):630-3. PubMed ID: 22812730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.