These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Solution to the Fokker-Planck equation for slowly driven Brownian motion: Emergent geometry and a formula for the corresponding thermodynamic metric. Wadia NS; Zarcone RV; DeWeese MR Phys Rev E; 2022 Mar; 105(3-1):034130. PubMed ID: 35428124 [TBL] [Abstract][Full Text] [Related]
3. Beyond Linear Response: Equivalence between Thermodynamic Geometry and Optimal Transport. Zhong A; DeWeese MR Phys Rev Lett; 2024 Aug; 133(5):057102. PubMed ID: 39159082 [TBL] [Abstract][Full Text] [Related]
4. Geometry of thermodynamic control. Zulkowski PR; Sivak DA; Crooks GE; DeWeese MR Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041148. PubMed ID: 23214570 [TBL] [Abstract][Full Text] [Related]
5. Minimally Dissipative Information Erasure in a Quantum Dot via Thermodynamic Length. Scandi M; Barker D; Lehmann S; Dick KA; Maisi VF; Perarnau-Llobet M Phys Rev Lett; 2022 Dec; 129(27):270601. PubMed ID: 36638287 [TBL] [Abstract][Full Text] [Related]
6. The Fokker-Planck approach for the cooperative molecular motor model with finite number of motors. Mouri K; Shimokawa T Biosystems; 2008; 93(1-2):58-67. PubMed ID: 18547712 [TBL] [Abstract][Full Text] [Related]
7. A Fokker-Planck feedback control framework for optimal personalized therapies in colon cancer-induced angiogenesis. Roy S; Pan Z; Pal S J Math Biol; 2022 Feb; 84(4):23. PubMed ID: 35212794 [TBL] [Abstract][Full Text] [Related]
8. Computing the optimal protocol for finite-time processes in stochastic thermodynamics. Then H; Engel A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041105. PubMed ID: 18517576 [TBL] [Abstract][Full Text] [Related]
9. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems. Wu W; Wang J J Chem Phys; 2013 Sep; 139(12):121920. PubMed ID: 24089732 [TBL] [Abstract][Full Text] [Related]
10. Master equations and the theory of stochastic path integrals. Weber MF; Frey E Rep Prog Phys; 2017 Apr; 80(4):046601. PubMed ID: 28306551 [TBL] [Abstract][Full Text] [Related]
12. Dynamical behavior of a nonlocal Fokker-Planck equation for a stochastic system with tempered stable noise. Lin L; Duan J; Wang X; Zhang Y Chaos; 2021 May; 31(5):051105. PubMed ID: 34240951 [TBL] [Abstract][Full Text] [Related]
13. Hamiltonian chaos acts like a finite energy reservoir: accuracy of the Fokker-Planck approximation. Riegert A; Baba N; Gelfert K; Just W; Kantz H Phys Rev Lett; 2005 Feb; 94(5):054103. PubMed ID: 15783645 [TBL] [Abstract][Full Text] [Related]
14. Minimizing irreversible losses in quantum systems by local counterdiabatic driving. Sels D; Polkovnikov A Proc Natl Acad Sci U S A; 2017 May; 114(20):E3909-E3916. PubMed ID: 28461472 [TBL] [Abstract][Full Text] [Related]
15. Shortcuts to adiabaticity for Lévy processes in harmonic traps. Baldovin M; Guéry-Odelin D; Trizac E Phys Rev E; 2022 Nov; 106(5-1):054122. PubMed ID: 36559466 [TBL] [Abstract][Full Text] [Related]
16. Rapid convergence of optimal control in NMR using numerically-constructed toggling frames. Coote P; Anklin C; Massefski W; Wagner G; Arthanari H J Magn Reson; 2017 Aug; 281():94-103. PubMed ID: 28578162 [TBL] [Abstract][Full Text] [Related]
17. Work statistics in the periodically driven quartic oscillator: Classical versus quantum dynamics. Heerwagen M; Engel A Phys Rev E; 2020 Aug; 102(2-1):022121. PubMed ID: 32942419 [TBL] [Abstract][Full Text] [Related]
18. Analytical results and universal behavior in fast thermal equilibration protocols. Rengifo D; Téllez G Phys Rev E; 2024 Jan; 109(1-1):014145. PubMed ID: 38366415 [TBL] [Abstract][Full Text] [Related]
19. Optimal control of rotary motors. Lucero JNE; Mehdizadeh A; Sivak DA Phys Rev E; 2019 Jan; 99(1-1):012119. PubMed ID: 30780326 [TBL] [Abstract][Full Text] [Related]