These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36397580)

  • 1. Depinning phase transition of antiferromagnetic skyrmions with quenched disorder.
    Wen MK; Xiong L; Zheng B
    Phys Rev E; 2022 Oct; 106(4-1):044137. PubMed ID: 36397580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulations of critical dynamics in anisotropic magnetic films with the stochastic Landau-Lifshitz-Gilbert equation.
    Jin MH; Zheng B; Xiong L; Zhou NJ; Wang L
    Phys Rev E; 2018 Aug; 98(2-1):022126. PubMed ID: 30253625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal current-velocity relation of skyrmion motion in chiral magnets.
    Iwasaki J; Mochizuki M; Nagaosa N
    Nat Commun; 2013; 4():1463. PubMed ID: 23403564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanism to pin skyrmions in chiral magnets.
    Liu YH; Li YQ
    J Phys Condens Matter; 2013 Feb; 25(7):076005. PubMed ID: 23339842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skyrmion Dynamics at Finite Temperatures: Beyond Thiele's Equation.
    Weißenhofer M; Rózsa L; Nowak U
    Phys Rev Lett; 2021 Jul; 127(4):047203. PubMed ID: 34355941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impurity-dependent gyrotropic motion, deflection and pinning of current-driven ultrasmall skyrmions in PdFe/Ir(111) surface.
    Fernandes IL; Chico J; Lounis S
    J Phys Condens Matter; 2020 Jul; 32(42):. PubMed ID: 32541095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets.
    Legrand W; Maccariello D; Ajejas F; Collin S; Vecchiola A; Bouzehouane K; Reyren N; Cros V; Fert A
    Nat Mater; 2020 Jan; 19(1):34-42. PubMed ID: 31477905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skyrmions near defects.
    Derras-Chouk A; Chudnovsky EM
    J Phys Condens Matter; 2021 Apr; 33(19):. PubMed ID: 33540401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of current-driven skyrmions in disordered magnets.
    Koshibae W; Nagaosa N
    Sci Rep; 2018 Apr; 8(1):6328. PubMed ID: 29679018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An achiral ferromagnetic/chiral antiferromagnetic bilayer system leading to controllable size and density of skyrmions.
    Morvan FJ; Luo HB; Yang HX; Zhang X; Zhou Y; Zhao GP; Xia WX; Liu JP
    Sci Rep; 2019 Feb; 9(1):2970. PubMed ID: 30814603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective transport properties of driven Skyrmions with random disorder.
    Reichhardt C; Ray D; Reichhardt CJ
    Phys Rev Lett; 2015 May; 114(21):217202. PubMed ID: 26066455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiferromagnetic half-skyrmions and bimerons at room temperature.
    Jani H; Lin JC; Chen J; Harrison J; Maccherozzi F; Schad J; Prakash S; Eom CB; Ariando A; Venkatesan T; Radaelli PG
    Nature; 2021 Feb; 590(7844):74-79. PubMed ID: 33536652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous organization and phase separation of skyrmions in chiral active matter.
    Li ZY; Zhang DQ; Lin SZ; Góźdź WT; Li B
    Soft Matter; 2022 Oct; 18(38):7348-7359. PubMed ID: 36124977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultra-fast laser illumination.
    Juge R; Sisodia N; Larrañaga JU; Zhang Q; Pham VT; Rana KG; Sarpi B; Mille N; Stanescu S; Belkhou R; Mawass MA; Novakovic-Marinkovic N; Kronast F; Weigand M; Gräfe J; Wintz S; Finizio S; Raabe J; Aballe L; Foerster M; Belmeguenai M; Buda-Prejbeanu LD; Pelloux-Prayer J; Shaw JM; Nembach HT; Ranno L; Gaudin G; Boulle O
    Nat Commun; 2022 Aug; 13(1):4807. PubMed ID: 35974009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature.
    Barker J; Tretiakov OA
    Phys Rev Lett; 2016 Apr; 116(14):147203. PubMed ID: 27104724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of the Topological Spin Hall Effect in Antiferromagnetic Skyrmions: Impact on Current-Induced Motion.
    Akosa CA; Tretiakov OA; Tatara G; Manchon A
    Phys Rev Lett; 2018 Aug; 121(9):097204. PubMed ID: 30230873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of compact ferrimagnetic skyrmions in DyCo
    Chen K; Lott D; Philippi-Kobs A; Weigand M; Luo C; Radu F
    Nanoscale; 2020 Sep; 12(35):18137-18143. PubMed ID: 32852506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-Temperature Skyrmions in an Antiferromagnet-Based Heterostructure.
    Yu G; Jenkins A; Ma X; Razavi SA; He C; Yin G; Shao Q; He QL; Wu H; Li W; Jiang W; Han X; Li X; Bleszynski Jayich AC; Amiri PK; Wang KL
    Nano Lett; 2018 Feb; 18(2):980-986. PubMed ID: 29271208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zero-Field Nucleation and Fast Motion of Skyrmions Induced by Nanosecond Current Pulses in a Ferrimagnetic Thin Film.
    Quessab Y; Xu JW; Cogulu E; Finizio S; Raabe J; Kent AD
    Nano Lett; 2022 Aug; 22(15):6091-6097. PubMed ID: 35877983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of zero-field non-synthetic single and interchained antiferromagnetic skyrmions in thin films.
    Aldarawsheh A; Fernandes IL; Brinker S; Sallermann M; Abusaa M; Blügel S; Lounis S
    Nat Commun; 2022 Nov; 13(1):7369. PubMed ID: 36450753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.