BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36397834)

  • 1. Exploration of Structured Symmetric Cyclic Peptides as Ligands for Metal-Organic Frameworks.
    Said MY; Kang CS; Wang S; Sheffler W; Salveson PJ; Bera AK; Kang A; Nguyen H; Ballard R; Li X; Bai H; Stewart L; Levine P; Baker D
    Chem Mater; 2022 Nov; 34(21):9736-9744. PubMed ID: 36397834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational design of mixed chirality peptide macrocycles with internal symmetry.
    Mulligan VK; Kang CS; Sawaya MR; Rettie S; Li X; Antselovich I; Craven TW; Watkins AM; Labonte JW; DiMaio F; Yeates TO; Baker D
    Protein Sci; 2020 Dec; 29(12):2433-2445. PubMed ID: 33058266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Adaptation of β-Peptide Foldamers for the Formation of Metal-Peptide Frameworks.
    Jeong S; Zhang L; Kim J; Gong J; Choi J; Ok KM; Lee Y; Kwon S; Lee HS
    Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202108364. PubMed ID: 34469030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal-Organic Nanocapsules.
    Shao L; Hu X; Sikligar K; Baker GA; Atwood JL
    Acc Chem Res; 2021 Aug; 54(16):3191-3203. PubMed ID: 34329553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Metal-Peptide Assemblies: Bioinspired Assembly of Peptides and Metals through Space and across Length Scales.
    Dong J; Liu Y; Cui Y
    J Am Chem Soc; 2021 Oct; 143(42):17316-17336. PubMed ID: 34618443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Coordination Networks from Cyclic Dipeptides.
    Guo Y; Nuermaimaiti A; Kjeldsen ND; Gothelf KV; Linderoth TR
    J Am Chem Soc; 2020 Nov; 142(47):19814-19818. PubMed ID: 33179492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular networking of macrocycles based on exo-coordination: from discrete to continuous frameworks.
    Park S; Lee SY; Park KM; Lee SS
    Acc Chem Res; 2012 Mar; 45(3):391-403. PubMed ID: 21967328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reticular Chemistry for Highly Porous Metal-Organic Frameworks: The Chemistry and Applications.
    Chen Z; Kirlikovali KO; Li P; Farha OK
    Acc Chem Res; 2022 Feb; 55(4):579-591. PubMed ID: 35112832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks.
    Chen L; Chen Q; Wu M; Jiang F; Hong M
    Acc Chem Res; 2015 Feb; 48(2):201-10. PubMed ID: 25517043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereochemistry in subcomponent self-assembly.
    Castilla AM; Ramsay WJ; Nitschke JR
    Acc Chem Res; 2014 Jul; 47(7):2063-73. PubMed ID: 24793652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications.
    Lin ZJ; Lü J; Hong M; Cao R
    Chem Soc Rev; 2014 Aug; 43(16):5867-95. PubMed ID: 24699533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron- and Cobalt-Catalyzed Asymmetric Hydrofunctionalization of Alkenes and Alkynes.
    Guo J; Cheng Z; Chen J; Chen X; Lu Z
    Acc Chem Res; 2021 Jun; 54(11):2701-2716. PubMed ID: 34011145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed-Ligand Metal-Organic Frameworks and Heteroleptic Coordination Cages as Multifunctional Scaffolds-A Comparison.
    Pullen S; Clever GH
    Acc Chem Res; 2018 Dec; 51(12):3052-3064. PubMed ID: 30379523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of metal-mediated protein assemblies via hydroxamic acid functionalities.
    Subramanian RH; Zhu J; Bailey JB; Chiong JA; Li Y; Golub E; Tezcan FA
    Nat Protoc; 2021 Jul; 16(7):3264-3297. PubMed ID: 34050338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal assembly, structures, topologies, luminescence, and magnetism of a novel series of coordination polymers driven by a trifunctional nicotinic acid building block.
    Gu JZ; Liang XX; Cai Y; Wu J; Shi ZF; Kirillov AM
    Dalton Trans; 2017 Aug; 46(33):10908-10925. PubMed ID: 28766617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the topology and functionality of metal-organic frameworks by ligand design.
    Zhao D; Timmons DJ; Yuan D; Zhou HC
    Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.
    Martí-Rujas J; Kawano M
    Acc Chem Res; 2013 Feb; 46(2):493-505. PubMed ID: 23252592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of metal-organic supramolecules: from a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands.
    Dai F; Dou J; He H; Zhao X; Sun D
    Inorg Chem; 2010 May; 49(9):4117-24. PubMed ID: 20380447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination chemistry of conformation-flexible 1,2,3,4,5,6-cyclohexanehexacarboxylate: trapping various conformations in metal-organic frameworks.
    Wang J; Lin ZJ; Ou YC; Shen Y; Herchel R; Tong ML
    Chemistry; 2008; 14(24):7218-35. PubMed ID: 18618562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.