These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 36397879)
1. Quadrature-free immersed isogeometric analysis. Antolin P; Hirschler T Eng Comput; 2022; 38(5):4475-4499. PubMed ID: 36397879 [TBL] [Abstract][Full Text] [Related]
2. Fast and multiscale formation of isogeometric matrices of microstructured geometric models. Hirschler T; Antolin P; Buffa A Comput Mech; 2022; 69(2):439-466. PubMed ID: 35221403 [TBL] [Abstract][Full Text] [Related]
3. Discretization of Non-uniform Rational B-Spline (NURBS) Models for Meshless Isogeometric Analysis. Duh U; Shankar V; Kosec G J Sci Comput; 2024; 100(2):51. PubMed ID: 38966340 [TBL] [Abstract][Full Text] [Related]
4. WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS. Mu L; Wang J; Wei G; Ye X; Zhao S J Comput Phys; 2013 Oct; 250():106-125. PubMed ID: 24072935 [TBL] [Abstract][Full Text] [Related]
5. Immersed boundary-conformal isogeometric method for linear elliptic problems. Wei X; Marussig B; Antolin P; Buffa A Comput Mech; 2021; 68(6):1385-1405. PubMed ID: 34789955 [TBL] [Abstract][Full Text] [Related]
6. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems. Xia K; Wei GW Comput Math Appl; 2014 Oct; 68(7):719-745. PubMed ID: 25309038 [TBL] [Abstract][Full Text] [Related]
10. A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems. Ying W; Henriquez CS J Comput Phys; 2007 Dec; 227(2):1046-1074. PubMed ID: 23519600 [TBL] [Abstract][Full Text] [Related]
11. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations. Feischl M; Gantner G; Praetorius D Comput Methods Appl Mech Eng; 2015 Jun; 290():362-386. PubMed ID: 26085698 [TBL] [Abstract][Full Text] [Related]
12. A partially penalty immersed Crouzeix-Raviart finite element method for interface problems. An N; Yu X; Chen H; Huang C; Liu Z J Inequal Appl; 2017; 2017(1):186. PubMed ID: 28855785 [TBL] [Abstract][Full Text] [Related]
13. Orthonormal Bernstein Galerkin technique for computations of higher order eigenvalue problems. Farzana H; Bhowmik SK; Islam MS MethodsX; 2023; 10():102006. PubMed ID: 36684474 [TBL] [Abstract][Full Text] [Related]
14. Supersonic turbulent flow simulation using a scalable parallel modal discontinuous Galerkin numerical method. Houba T; Dasgupta A; Gopalakrishnan S; Gosse R; Roy S Sci Rep; 2019 Oct; 9(1):14442. PubMed ID: 31594959 [TBL] [Abstract][Full Text] [Related]
15. An immersed boundary neural network for solving elliptic equations with singular forces on arbitrary domains. Balam RI; Hernandez-Lopez F; Trejo-Sánchez J; Zapata MU Math Biosci Eng; 2020 Nov; 18(1):22-56. PubMed ID: 33525079 [TBL] [Abstract][Full Text] [Related]
16. The analytical subtraction approach for solving the forward problem in EEG. Beltrachini L J Neural Eng; 2019 Sep; 16(5):056029. PubMed ID: 31158827 [TBL] [Abstract][Full Text] [Related]
17. Boundary element computations in the forward and inverse problems of electrocardiography: comparison of collocation and Galerkin weightings. Stenroos M; Haueisen J IEEE Trans Biomed Eng; 2008 Sep; 55(9):2124-33. PubMed ID: 18713681 [TBL] [Abstract][Full Text] [Related]
19. Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space. Bause M; Radu FA; Köcher U Numer Math (Heidelb); 2017; 137(4):773-818. PubMed ID: 29151621 [TBL] [Abstract][Full Text] [Related]
20. Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces. Wang C; Xu F; Hsu MC; Krishnamurthy A Comput Aided Geom Des; 2017; 52-53():190-204. PubMed ID: 29051678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]