These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36398755)

  • 21. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae.
    Lorenz MC; Cutler NS; Heitman J
    Mol Biol Cell; 2000 Jan; 11(1):183-99. PubMed ID: 10637301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using CellProfiler for Automatic Identification and Measurement of Biological Objects in Images.
    Bray MA; Vokes MS; Carpenter AE
    Curr Protoc Mol Biol; 2015 Jan; 109():14.17.1-14.17.13. PubMed ID: 25559103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-Scale Analysis of Kinase Signaling in Yeast Pseudohyphal Development Identifies Regulation of Ribonucleoprotein Granules.
    Shively CA; Kweon HK; Norman KL; Mellacheruvu D; Xu T; Sheidy DT; Dobry CJ; Sabath I; Cosky EE; Tran EJ; Nesvizhskii A; Andrews PC; Kumar A
    PLoS Genet; 2015 Oct; 11(10):e1005564. PubMed ID: 26447709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. gitter: a robust and accurate method for quantification of colony sizes from plate images.
    Wagih O; Parts L
    G3 (Bethesda); 2014 Mar; 4(3):547-52. PubMed ID: 24474170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Complex Genetic Basis and Multilayered Regulatory Control of Yeast Pseudohyphal Growth.
    Kumar A
    Annu Rev Genet; 2021 Nov; 55():1-21. PubMed ID: 34280314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate, precise modeling of cell proliferation kinetics from time-lapse imaging and automated image analysis of agar yeast culture arrays.
    Shah NA; Laws RJ; Wardman B; Zhao LP; Hartman JL
    BMC Syst Biol; 2007 Jan; 1():3. PubMed ID: 17408510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of image processing program for yeast cell morphology.
    Ohtani M; Saka A; Sano F; Ohya Y; Morishita S
    J Bioinform Comput Biol; 2004 Jan; 1(4):695-709. PubMed ID: 15290760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional divergence of a global regulatory complex governing fungal filamentation.
    Polvi EJ; Veri AO; Liu Z; Hossain S; Hyde S; Kim SH; Tebbji F; Sellam A; Todd RT; Xie JL; Lin ZY; Wong CJ; Shapiro RS; Whiteway M; Robbins N; Gingras AC; Selmecki A; Cowen LE
    PLoS Genet; 2019 Jan; 15(1):e1007901. PubMed ID: 30615616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. KRH1 and KRH2 are functionally non-redundant in signaling for pseudohyphal differentiation in Saccharomyces cerevisiae.
    Iyer RS; Bhat PJ
    Curr Genet; 2017 Oct; 63(5):851-859. PubMed ID: 28247024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Candida albicans INT1-induced filamentation in Saccharomyces cerevisiae depends on Sla2p.
    Asleson CM; Bensen ES; Gale CA; Melms AS; Kurischko C; Berman J
    Mol Cell Biol; 2001 Feb; 21(4):1272-84. PubMed ID: 11158313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS.
    Gimeno CJ; Ljungdahl PO; Styles CA; Fink GR
    Cell; 1992 Mar; 68(6):1077-90. PubMed ID: 1547504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying yeast colony morphologies with feature engineering from time-lapse photography.
    Goldschmidt A; Kunert-Graf J; Scott AC; Tan Z; Dudley AM; Kutz JN
    Sci Data; 2022 May; 9(1):216. PubMed ID: 35581201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae.
    Van de Velde S; Thevelein JM
    Eukaryot Cell; 2008 Feb; 7(2):286-93. PubMed ID: 17890371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Cbk1-Ace2 axis guides Candida albicans from yeast to hyphae and back again.
    Wakade RS; Krysan DJ
    Curr Genet; 2021 Jun; 67(3):461-469. PubMed ID: 33433733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenotypic Switching and Filamentation in Candida haemulonii, an Emerging Opportunistic Pathogen of Humans.
    Deng Y; Li S; Bing J; Liao W; Tao L
    Microbiol Spectr; 2021 Dec; 9(3):e0077921. PubMed ID: 34878301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway.
    Loeb JD; Kerentseva TA; Pan T; Sepulveda-Becerra M; Liu H
    Genetics; 1999 Dec; 153(4):1535-46. PubMed ID: 10581264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterizing the shape patterns of dimorphic yeast pseudohyphae.
    Gontar A; Bottema MJ; Binder BJ; Tronnolone H
    R Soc Open Sci; 2018 Oct; 5(10):180820. PubMed ID: 30473830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of image processing programs for accurate measurement of budding and fission yeast morphology.
    Suzuki G; Sawai H; Ohtani M; Nogami S; Sano-Kumagai F; Saka A; Yukawa M; Saito TL; Sese J; Hirata D; Morishita S; Ohya Y
    Curr Genet; 2006 Apr; 49(4):237-47. PubMed ID: 16397764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains.
    Lorenz MC; Heitman J
    Genetics; 1998 Dec; 150(4):1443-57. PubMed ID: 9832522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae.
    Pan X; Harashima T; Heitman J
    Curr Opin Microbiol; 2000 Dec; 3(6):567-72. PubMed ID: 11121775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.