These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36398860)

  • 1. Cell deformability heterogeneity recognition by unsupervised machine learning from in-flow motion parameters.
    Maremonti MI; Dannhauser D; Panzetta V; Netti PA; Causa F
    Lab Chip; 2022 Dec; 22(24):4871-4881. PubMed ID: 36398860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry.
    Gerum R; Mirzahossein E; Eroles M; Elsterer J; Mainka A; Bauer A; Sonntag S; Winterl A; Bartl J; Fischer L; Abuhattum S; Goswami R; Girardo S; Guck J; Schrüfer S; Ströhlein N; Nosratlo M; Herrmann H; Schultheis D; Rico F; Müller SJ; Gekle S; Fabry B
    Elife; 2022 Sep; 11():. PubMed ID: 36053000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical phenotyping of breast cell lines by in-flow deformation-dependent dynamics under tuneable compressive forces.
    Dannhauser D; Maremonti MI; Panzetta V; Rossi D; Netti PA; Causa F
    Lab Chip; 2020 Dec; 20(24):4611-4622. PubMed ID: 33146642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full dynamics of a red blood cell in shear flow.
    Dupire J; Socol M; Viallat A
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20808-13. PubMed ID: 23213229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamics of inextensible capsules in shear flow under the effect of the natural state.
    Niu X; Pan TW; Glowinski R
    Biomech Model Mechanobiol; 2015 Aug; 14(4):865-76. PubMed ID: 25510228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicles under simple shear flow: elucidating the role of relevant control parameters.
    Kaoui B; Farutin A; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061905. PubMed ID: 20365188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical approach to the motion of a red blood cell in Couette flow.
    Sugihara M; Niimi H
    Biorheology; 1984; 21(6):735-49. PubMed ID: 6518286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of rheology of red blood cell rouleaux in microchannels.
    Wang T; Pan TW; Xing ZW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041916. PubMed ID: 19518265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell.
    Tsubota K; Wada S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011910. PubMed ID: 20365402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red cell deformability and haematological disorders.
    Stuart J; Nash GB
    Blood Rev; 1990 Sep; 4(3):141-7. PubMed ID: 2245249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional simulation of red blood cell motion near a wall under a lateral force.
    Hariprasad DS; Secomb TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053014. PubMed ID: 25493888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between blood rheological properties and red blood cell indices(MCH, MCV, MCHC) in healthy women.
    von Tempelhoff GF; Schelkunov O; Demirhan A; Tsikouras P; Rath W; Velten E; Csorba R
    Clin Hemorheol Microcirc; 2016; 62(1):45-54. PubMed ID: 26410854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell Mechanics Based Computational Classification of Red Blood Cells Via Machine Intelligence Applied to Morpho-Rheological Markers.
    Ge Y; Rosendahl P; Duran C; Topfner N; Ciucci S; Guck J; Cannistraci CV
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1405-1415. PubMed ID: 31670675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red blood cell: from its mechanics to its motion in shear flow.
    Viallat A; Abkarian M
    Int J Lab Hematol; 2014 Jun; 36(3):237-43. PubMed ID: 24750669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood cell distribution in small and large vessels: Effects of wall and rotating motion of red blood cells.
    Tsubota KI; Namioka K
    J Biomech; 2022 May; 137():111081. PubMed ID: 35472709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of a single red blood cell in simple shear flow.
    Sinha K; Graham MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042710. PubMed ID: 26565275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cytoskeleton and deformability in laminin-mediated cell rolling.
    Wu S; Hoxter B; Byers SW; Tozeren A
    Biorheology; 1998; 35(1):37-51. PubMed ID: 10211128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised Learning of Monocular Depth and Ego-Motion with Optical Flow Features and Multiple Constraints.
    Zhao B; Huang Y; Ci W; Hu X
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Individual Red Blood Cells Under Shear Flow: A Way to Discriminate Deformability Alterations.
    Atwell S; Badens C; Charrier A; Helfer E; Viallat A
    Front Physiol; 2021; 12():775584. PubMed ID: 35069240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.