These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 36398860)
41. Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot. Cadet XF; Lo-Thong O; Bureau S; Dehak R; Bessafi M Sci Rep; 2019 Dec; 9(1):19197. PubMed ID: 31844151 [TBL] [Abstract][Full Text] [Related]
42. Three-dimensional dynamics of oblate and prolate capsules in shear flow. Wang Z; Sui Y; Spelt PD; Wang W Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053021. PubMed ID: 24329365 [TBL] [Abstract][Full Text] [Related]
43. Alterations in red blood cell deformability during storage: a microfluidic approach. Cluitmans JC; Chokkalingam V; Janssen AM; Brock R; Huck WT; Bosman GJ Biomed Res Int; 2014; 2014():764268. PubMed ID: 25295273 [TBL] [Abstract][Full Text] [Related]
44. Red blood cell-deformability measurement: review of techniques. Musielak M Clin Hemorheol Microcirc; 2009; 42(1):47-64. PubMed ID: 19363240 [TBL] [Abstract][Full Text] [Related]
45. Examination of the flow rheological and textural properties of polymer gels composed of poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone): rheological and mathematical interpretation of textural parameters. Jones DS; Lawlor MS; Woolfson AD J Pharm Sci; 2002 Sep; 91(9):2090-101. PubMed ID: 12210055 [TBL] [Abstract][Full Text] [Related]
46. Unsupervised Machine Learning for Assessment of Left Ventricular Diastolic Function and Risk Stratification. Chao CJ; Kato N; Scott CG; Lopez-Jimenez F; Lin G; Kane GC; Pellikka PA J Am Soc Echocardiogr; 2022 Dec; 35(12):1214-1225.e8. PubMed ID: 35840082 [TBL] [Abstract][Full Text] [Related]
47. Recreating the Motion Trajectory of a System of Articulated Rigid Bodies on the Basis of Incomplete Measurement Information and Unsupervised Learning. Nalepa B; Pawlyta M; Janiak M; Szczęsna A; Gwiazda A; Wojciechowski K Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336372 [TBL] [Abstract][Full Text] [Related]
48. Filterability and other methods of approaching red cell deformability. Determinants of blood viscosity and red cell deformability. Chien S Scand J Clin Lab Invest Suppl; 1981; 156():7-12. PubMed ID: 6948403 [TBL] [Abstract][Full Text] [Related]
49. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Skotheim JM; Secomb TW Phys Rev Lett; 2007 Feb; 98(7):078301. PubMed ID: 17359066 [TBL] [Abstract][Full Text] [Related]
50. Deduction of intrinsic mechanical properties of the erythrocyte membrane from observations of tank-treading in the rheoscope. Sutera SP; Pierre PR; Zahalak GI Biorheology; 1989; 26(2):177-97. PubMed ID: 2605327 [TBL] [Abstract][Full Text] [Related]
51. [Assessment of whole cell deformability of individual erythrocytes with a capillary rigidometer--possibilities for standardization and modification]. Neumann M; Lerche D; Meier W; Paulitschke M Biomed Tech (Berl); 1993 Sep; 38(9):204-12. PubMed ID: 8218867 [TBL] [Abstract][Full Text] [Related]
52. Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells. Krüger T; Gross M; Raabe D; Varnik F Soft Matter; 2013 Aug; 9(37):9008-15. PubMed ID: 25353617 [TBL] [Abstract][Full Text] [Related]
53. Swinging and tumbling of fluid vesicles in shear flow. Noguchi H; Gompper G Phys Rev Lett; 2007 Mar; 98(12):128103. PubMed ID: 17501159 [TBL] [Abstract][Full Text] [Related]
54. Changes in mu opioid receptors and rheological properties of erythrocytes among opioid abusers. Zeiger AR; Patkar AA; Fitzgerald R; Lundy A; Ballas SK; Weinstein SP Addict Biol; 2002 Apr; 7(2):207-17. PubMed ID: 12006216 [TBL] [Abstract][Full Text] [Related]
55. Analysis of membrane tank-tread of nonspherical capsules and red blood cells. Bagchi P; Yazdani AZ Eur Phys J E Soft Matter; 2012 Oct; 35(10):103. PubMed ID: 23064826 [TBL] [Abstract][Full Text] [Related]
56. Blood rheology and physiology of microcirculation. Schmid-Schönbein H Ric Clin Lab; 1981; 11 Suppl 1():13-33. PubMed ID: 7188106 [TBL] [Abstract][Full Text] [Related]
57. Feature selection for unsupervised machine learning of accelerometer data physical activity clusters - A systematic review. Jones PJ; Catt M; Davies MJ; Edwardson CL; Mirkes EM; Khunti K; Yates T; Rowlands AV Gait Posture; 2021 Oct; 90():120-128. PubMed ID: 34438293 [TBL] [Abstract][Full Text] [Related]
58. Research of rheological properties of medicinal syrup for oral use. Davtian LL; Kukhtenko GP; Voronkina AS; Kudria VV Wiad Lek; 2020; 73(4):696-699. PubMed ID: 32731699 [TBL] [Abstract][Full Text] [Related]
59. Spin-label studies of erythrocyte deformability. IV. Relation of electron spin resonance spectral change with deformation and orientation of erythrocytes in shear flow. Noji S; Kon H; Taniguchi S Biophys J; 1984 Sep; 46(3):349-55. PubMed ID: 6091803 [TBL] [Abstract][Full Text] [Related]
60. Effect of microvillus deformability on leukocyte adhesion explored using adhesive dynamics simulations. Caputo KE; Hammer DA Biophys J; 2005 Jul; 89(1):187-200. PubMed ID: 15879471 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]