BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36399058)

  • 1. What the Phage: a scalable workflow for the identification and analysis of phage sequences.
    Marquet M; Hölzer M; Pletz MW; Viehweger A; Makarewicz O; Ehricht R; Brandt C
    Gigascience; 2022 Nov; 11():. PubMed ID: 36399058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MetaPhage: an Automated Pipeline for Analyzing, Annotating, and Classifying Bacteriophages in Metagenomics Sequencing Data.
    Pandolfo M; Telatin A; Lazzari G; Adriaenssens EM; Vitulo N
    mSystems; 2022 Oct; 7(5):e0074122. PubMed ID: 36069454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput identification of viral termini and packaging mechanisms in virome datasets using PhageTermVirome.
    Garneau JR; Legrand V; Marbouty M; Press MO; Vik DR; Fortier LC; Sullivan MB; Bikard D; Monot M
    Sci Rep; 2021 Sep; 11(1):18319. PubMed ID: 34526611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. poreCov-An Easy to Use, Fast, and Robust Workflow for SARS-CoV-2 Genome Reconstruction
    Brandt C; Krautwurst S; Spott R; Lohde M; Jundzill M; Marquet M; Hölzer M
    Front Genet; 2021; 12():711437. PubMed ID: 34394197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeePVP: Identification and classification of phage virion proteins using deep learning.
    Fang Z; Feng T; Zhou H; Chen M
    Gigascience; 2022 Aug; 11():. PubMed ID: 35950840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeephageTP: a convolutional neural network framework for identifying phage-specific proteins from metagenomic sequencing data.
    Chu Y; Guo S; Cui D; Fu X; Ma Y
    PeerJ; 2022; 10():e13404. PubMed ID: 35698617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Component Parts of Bacteriophage Virions Accurately Defined by a Machine-Learning Approach Built on Evolutionary Features.
    Thung TY; White ME; Dai W; Wilksch JJ; Bamert RS; Rocker A; Stubenrauch CJ; Williams D; Huang C; Schittelhelm R; Barr JJ; Jameson E; McGowan S; Zhang Y; Wang J; Dunstan RA; Lithgow T
    mSystems; 2021 Jun; 6(3):e0024221. PubMed ID: 34042467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VIBES: A Workflow for Annotating and Visualizing Viral Sequences Integrated into Bacterial Genomes.
    Copeland CJ; Roddy JW; Schmidt AK; Secor PR; Wheeler TJ
    bioRxiv; 2023 Oct; ():. PubMed ID: 37905003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PhaBOX: a web server for identifying and characterizing phage contigs in metagenomic data.
    Shang J; Peng C; Liao H; Tang X; Sun Y
    Bioinform Adv; 2023; 3(1):vbad101. PubMed ID: 37641717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. nf-core/nanostring: a pipeline for reproducible NanoString nCounter analysis.
    Peltzer A; Mohr C; Stadermann KB; Zwick M; Schmid R
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38212989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepHost: phage host prediction with convolutional neural network.
    Ruohan W; Xianglilan Z; Jianping W; Shuai Cheng LI
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Co-occurrence Networks Reflect Bacteriophage Ecology and Evolution.
    Shapiro JW; Putonti C
    mBio; 2018 Mar; 9(2):. PubMed ID: 29559574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PhaVIP: Phage VIrion Protein classification based on chaos game representation and Vision Transformer.
    Shang J; Peng C; Tang X; Sun Y
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i30-i39. PubMed ID: 37387136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PhamDB: a web-based application for building Phamerator databases.
    Lamine JG; DeJong RJ; Nelesen SM
    Bioinformatics; 2016 Jul; 32(13):2026-8. PubMed ID: 27153674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the phage sequence space: the benefit of structured information.
    Lima-Mendez G; Toussaint A; Leplae R
    Virology; 2007 Sep; 365(2):241-9. PubMed ID: 17482656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manufacturing of bacteriophages for therapeutic applications.
    João J; Lampreia J; Prazeres DMF; Azevedo AM
    Biotechnol Adv; 2021; 49():107758. PubMed ID: 33895333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs.
    Galiez C; Siebert M; Enault F; Vincent J; Söding J
    Bioinformatics; 2017 Oct; 33(19):3113-3114. PubMed ID: 28957499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants.
    Garcia M; Juhos S; Larsson M; Olason PI; Martin M; Eisfeldt J; DiLorenzo S; Sandgren J; Díaz De Ståhl T; Ewels P; Wirta V; Nistér M; Käller M; Nystedt B
    F1000Res; 2020; 9():63. PubMed ID: 32269765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. eDNAFlow, an automated, reproducible and scalable workflow for analysis of environmental DNA sequences exploiting Nextflow and Singularity.
    Mousavi-Derazmahalleh M; Stott A; Lines R; Peverley G; Nester G; Simpson T; Zawierta M; De La Pierre M; Bunce M; Christophersen CT
    Mol Ecol Resour; 2021 Jul; 21(5):1697-1704. PubMed ID: 33580619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.