BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36399063)

  • 1. Single-cell RNA-sequencing analysis of early sea star development.
    Foster S; Oulhen N; Fresques T; Zaki H; Wessel G
    Development; 2022 Nov; 149(22):. PubMed ID: 36399063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved node in the regulation of Vasa between an induced and an inherited program of primordial germ cell specification.
    Perillo M; Swartz SZ; Wessel GM
    Dev Biol; 2022 Feb; 482():28-33. PubMed ID: 34863708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New hypotheses of cell type diversity and novelty from orthology-driven comparative single cell and nuclei transcriptomics in echinoderms.
    Meyer A; Ku C; Hatleberg WL; Telmer CA; Hinman V
    Elife; 2023 Jul; 12():. PubMed ID: 37470227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective accumulation of germ-line associated gene products in early development of the sea star and distinct differences from germ-line development in the sea urchin.
    Fresques T; Zazueta-Novoa V; Reich A; Wessel GM
    Dev Dyn; 2014 Apr; 243(4):568-87. PubMed ID: 24038550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs).
    Campanale JP; Hamdoun A; Wessel GM; Su YH; Oulhen N
    Methods Cell Biol; 2019; 150():269-292. PubMed ID: 30777180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene regulatory divergence amongst echinoderms underlies appearance of pigment cells in sea urchin development.
    Spurrell M; Oulhen N; Foster S; Perillo M; Wessel G
    Dev Biol; 2023 Feb; 494():13-25. PubMed ID: 36519720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-transcriptional regulation of factors important for the germ line.
    Oulhen N; Morita S; Wessel GM
    Curr Top Dev Biol; 2022; 146():49-78. PubMed ID: 35152986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.
    Kadri S; Hinman VF; Benos PV
    PLoS One; 2011; 6(12):e29217. PubMed ID: 22216218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nodal induces sequential restriction of germ cell factors during primordial germ cell specification.
    Fresques TM; Wessel GM
    Development; 2018 Jan; 145(2):. PubMed ID: 29358213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The arm of the starfish: The far-reaching applications of Patiria miniata as a model system in evolutionary, developmental, and regenerative biology.
    Meyer A; Hinman V
    Curr Top Dev Biol; 2022; 147():523-543. PubMed ID: 35337461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos.
    Satoh N; Hisata K; Foster S; Morita S; Nishitsuji K; Oulhen N; Tominaga H; Wessel GM
    Dev Biol; 2022 Mar; 483():128-142. PubMed ID: 35038441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii.
    Vaughn R; Garnhart N; Garey JR; Thomas WK; Livingston BT
    Evodevo; 2012 Sep; 3(1):19. PubMed ID: 22938175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin.
    Yajima M; Wessel GM
    Development; 2012 Oct; 139(20):3786-94. PubMed ID: 22991443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental transcriptomes of the sea star, Patiria miniata, illuminate how gene expression changes with evolutionary distance.
    Gildor T; Cary GA; Lalzar M; Hinman VF; Ben-Tabou de-Leon S
    Sci Rep; 2019 Nov; 9(1):16201. PubMed ID: 31700051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory heterochronies and loose temporal scaling between sea star and sea urchin regulatory circuits.
    Gildor T; Hinman V; Ben-Tabou-De-Leon S
    Int J Dev Biol; 2017; 61(3-4-5):347-356. PubMed ID: 28621432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional annotation of a hugely expanded nanos repertoire in Lytechinus variegatus, the green sea urchin.
    Pieplow C; Wessel G
    Mol Reprod Dev; 2023 May; 90(5):310-322. PubMed ID: 37039283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Every which way--nanos gene regulation in echinoderms.
    Oulhen N; Wessel GM
    Genesis; 2014 Mar; 52(3):279-86. PubMed ID: 24376110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single cell RNA sequencing resource for early sea urchin development.
    Foster S; Oulhen N; Wessel G
    Development; 2020 Sep; 147(17):. PubMed ID: 32816969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bindin from a sea star.
    Patiño S; Aagaard JE; MacCoss MJ; Swanson WJ; Hart MW
    Evol Dev; 2009; 11(4):376-81. PubMed ID: 19601971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracing the history of cell types.
    Grausgruber A; Revilla-I-Domingo R
    Elife; 2023 Aug; 12():. PubMed ID: 37530753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.