These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36399136)

  • 1. The nonlinear motion of cells subject to external forces.
    Ioratim-Uba A; Loisy A; Henkes S; Liverpool TB
    Soft Matter; 2022 Dec; 18(47):9008-9016. PubMed ID: 36399136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How many ways a cell can move: the modes of self-propulsion of an active drop.
    Loisy A; Eggers J; Liverpool TB
    Soft Matter; 2020 Mar; 16(12):3106-3124. PubMed ID: 32154549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tractionless Self-Propulsion of Active Drops.
    Loisy A; Eggers J; Liverpool TB
    Phys Rev Lett; 2019 Dec; 123(24):248006. PubMed ID: 31922859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin-film modeling of resting and moving active droplets.
    Trinschek S; Stegemerten F; John K; Thiele U
    Phys Rev E; 2020 Jun; 101(6-1):062802. PubMed ID: 32688574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the autonomous motion of active drops or bubbles.
    Ryazantsev YS; Velarde MG; Guzman E; Rubio RG; Ortega F; Montoya JJ
    J Colloid Interface Sci; 2018 Oct; 527():180-186. PubMed ID: 29793172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spreading of liquid drops over porous substrates.
    Starov VM; Zhdanov SA; Kosvintsev SR; Sobolev VD; Velarde MG
    Adv Colloid Interface Sci; 2003 Jul; 104():123-58. PubMed ID: 12818493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion of deformable drops through granular media and other confined geometries.
    Davis RH; Zinchenko AZ
    J Colloid Interface Sci; 2009 Jun; 334(2):113-23. PubMed ID: 19406427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear dynamics of a chemically-active drop: From steady to chaotic self-propulsion.
    Morozov M; Michelin S
    J Chem Phys; 2019 Jan; 150(4):044110. PubMed ID: 30709268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motility of active fluid drops on surfaces.
    Khoromskaia D; Alexander GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062311. PubMed ID: 26764696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear electrokinetic flow about a polarized conducting drop.
    Schnitzer O; Yariv E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):041002. PubMed ID: 23679365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientational instability and spontaneous rotation of active nematic droplets.
    Morozov M; Michelin S
    Soft Matter; 2019 Oct; 15(39):7814-7822. PubMed ID: 31517379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forces between oil drops in polymer-surfactant systems: Linking direct force measurements to microfluidic observations.
    Jamieson EJ; Fewkes CJ; Berry JD; Dagastine RR
    J Colloid Interface Sci; 2019 May; 544():130-143. PubMed ID: 30831547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directional motion of impacting drops on dual-textured surfaces.
    Vaikuntanathan V; Sivakumar D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036315. PubMed ID: 23031021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling crawling cell movement on soft engineered substrates.
    Löber J; Ziebert F; Aranson IS
    Soft Matter; 2014 Mar; 10(9):1365-73. PubMed ID: 24651116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drying-induced stresses in poroelastic drops on rigid substrates.
    Hennessy MG; Craster RV; Matar OK
    Phys Rev E; 2022 May; 105(5-1):054602. PubMed ID: 35706225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coalescence and noncoalescence of sessile drops: impact of surface forces.
    Karpitschka S; Hanske C; Fery A; Riegler H
    Langmuir; 2014 Jun; 30(23):6826-30. PubMed ID: 24841430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Cell Propulsion by Active Stresses.
    Carlsson AE
    New J Phys; 2011 Jul; 13():. PubMed ID: 21804763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.