These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36399137)

  • 1. Structured Electrode Additive Manufacturing for Lithium-Ion Batteries.
    Park S; Shi B; Shang Y; Deng K; Fu K
    Nano Lett; 2022 Dec; 22(23):9462-9469. PubMed ID: 36399137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach.
    Wang J; Sun Q; Gao X; Wang C; Li W; Holness FB; Zheng M; Li R; Price AD; Sun X; Sham TK; Sun X
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39794-39801. PubMed ID: 30372018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-Printed Thermoplastic Polyurethane Electrodes for Customizable, Flexible Lithium-Ion Batteries with an Ultra-Long Lifetime.
    Hu X; Chen Y; Xu W; Zhu Y; Kim D; Fan Y; Yu B; Chen Y
    Small; 2023 Aug; 19(34):e2301604. PubMed ID: 37093454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strengthening the Electrodes for Li-Ion Batteries with a Porous Adhesive Interlayer through Dry-Spraying Manufacturing.
    Liu J; Ludwig B; Liu Y; Pan H; Wang Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25081-25089. PubMed ID: 31149798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed Silicone Substrates as Highly Deformable Electrodes for Stretchable Li-Ion Batteries.
    Praveen S; Kim T; Jung SP; Lee CW
    Small; 2023 Jan; 19(3):e2205817. PubMed ID: 36408809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low Tortuous, Highly Conductive, and High-Areal-Capacity Battery Electrodes Enabled by Through-thickness Aligned Carbon Fiber Framework.
    Shi B; Shang Y; Pei Y; Pei S; Wang L; Heider D; Zhao YY; Zheng C; Yang B; Yarlagadda S; Chou TW; Fu KK
    Nano Lett; 2020 Jul; 20(7):5504-5512. PubMed ID: 32551672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Dry-Pressed Electrodes Based on Holey Graphene.
    Lin Y; Plaza-Rivera CO; Hu L; Connell JW
    Acc Chem Res; 2022 Oct; 55(20):3020-3031. PubMed ID: 36173244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printing of easily recyclable all-ceramic thick LiCoO
    de la Torre-Gamarra C; GarcĂ­a-Suelto MD; Del Rio Santos D; Levenfeld B; Varez A
    J Colloid Interface Sci; 2023 Jul; 642():351-363. PubMed ID: 37011453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous Cu Film Enables Thick Slurry-Cast Anodes with Enhanced Charge Transfer Efficiency for High-Performance Li-Ion Batteries.
    Ren Z; Huang L; Lin Z; Mu Y; Ji X; Zeng J; Yu J
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47623-47633. PubMed ID: 33047606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional printed lithium iron phosphate coated with magnesium oxide cathode with improved areal capacity and ultralong cycling stability for high performance lithium-ion batteries.
    Pierre Mwizerwa J; Liu C; Xu K; Zhao N; Li Y; Chen Z; Shen J
    J Colloid Interface Sci; 2022 Oct; 623():168-181. PubMed ID: 35576648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes.
    Zhang X; Hui Z; King S; Wang L; Ju Z; Wu J; Takeuchi KJ; Marschilok AC; West AC; Takeuchi ES; Yu G
    Nano Lett; 2021 Jul; 21(13):5896-5904. PubMed ID: 34197125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing Low Tortuosity Electrodes through Pattern Optimization for Fast-Charging.
    Wang Y; Zhang Y; Cao D; Ji T; Ren H; Wang G; Wu Q; Zhu H
    Small Methods; 2023 Apr; 7(4):e2201344. PubMed ID: 36808286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promoting Transport Kinetics in Li-Ion Battery with Aligned Porous Electrode Architectures.
    Zhang X; Ju Z; Housel LM; Wang L; Zhu Y; Singh G; Sadique N; Takeuchi KJ; Takeuchi ES; Marschilok AC; Yu G
    Nano Lett; 2019 Nov; 19(11):8255-8261. PubMed ID: 31661622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling the electrochemical simulation of Li-ion battery electrodes with anisotropic tortuosity in COMSOL Multiphysics
    Goel V; Thornton K
    MethodsX; 2021; 8():101425. PubMed ID: 34430320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screen-Printed Nickel-Zinc Batteries: A Review of Additive Manufacturing and Evaluation Methods.
    Nazri MA; Lim LM; Samsudin Z; Ali MYT; Mansor I; Suhaimi MI; Meskon SR; Nordin AN
    3D Print Addit Manuf; 2021 Jun; 8(3):176-192. PubMed ID: 36654659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of modern lithium ion batteries by 3D inkjet printing: opportunities and challenges.
    Sztymela K; Bienia M; Rossignol F; Mailley S; Ziesche S; Varghese J; Cerbelaud M
    Heliyon; 2022 Dec; 8(12):e12623. PubMed ID: 36636225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries.
    Ludwig B; Zheng Z; Shou W; Wang Y; Pan H
    Sci Rep; 2016 Mar; 6():23150. PubMed ID: 26984488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells.
    Stein M; Chen CF; Robles DJ; Rhodes C; Mukherjee PP
    J Vis Exp; 2016 Feb; (108):e53490. PubMed ID: 26863503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries.
    Ye J; Baumgaertel AC; Wang YM; Biener J; Biener MM
    ACS Nano; 2015 Feb; 9(2):2194-202. PubMed ID: 25491650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.