BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 36399213)

  • 1. Ultra-confined Propagating Exciton-Plasmon Polaritons Enabled by Cavity-Free Strong Coupling: Beating Plasmonic Trade-Offs.
    Wang Y; Luo A; Zhu C; Li Z; Wu X
    Nanoscale Res Lett; 2022 Nov; 17(1):109. PubMed ID: 36399213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically Tunable Exciton-Plasmon Coupling in a WSe
    Dibos AM; Zhou Y; Jauregui LA; Scuri G; Wild DS; High AA; Taniguchi T; Watanabe K; Lukin MD; Kim P; Park H
    Nano Lett; 2019 Jun; 19(6):3543-3547. PubMed ID: 31117747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures.
    Sun J; Li Y; Hu H; Chen W; Zheng D; Zhang S; Xu H
    Nanoscale; 2021 Mar; 13(8):4408-4419. PubMed ID: 33605947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons.
    Balci S; Kocabas C
    Opt Lett; 2015 Jul; 40(14):3424-7. PubMed ID: 26176485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides.
    Ye L; Xiao Y; Liu Y; Zhang L; Cai G; Liu QH
    Sci Rep; 2016 Dec; 6():38528. PubMed ID: 27917930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit.
    Chen J; Sun C; Li H; Gong Q
    Nanoscale; 2014 Nov; 6(22):13487-93. PubMed ID: 25204379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye-assisted gain of strongly confined surface plasmon polaritons in silver nanowires.
    Paul A; Zhen YR; Wang Y; Chang WS; Xia Y; Nordlander P; Link S
    Nano Lett; 2014 Jun; 14(6):3628-33. PubMed ID: 24798451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical Control of Hybrid Monolayer Tungsten Disulfide-Plasmonic Nanoantenna Light-Matter States at Cryogenic and Room Temperatures.
    Munkhbat B; Baranov DG; Bisht A; Hoque MA; Karpiak B; Dash SP; Shegai T
    ACS Nano; 2020 Jan; 14(1):1196-1206. PubMed ID: 31904217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide.
    Liu X; Bao W; Li Q; Ropp C; Wang Y; Zhang X
    Phys Rev Lett; 2017 Jul; 119(2):027403. PubMed ID: 28753353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Nanowire-Rectangular Plasmonic Waveguide for Subwavelength Confinement at 1550 Nm.
    Wang Y; Liu H; Wang S; Cai M
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transversely Divergent Second Harmonic Generation by Surface Plasmon Polaritons on Single Metallic Nanowires.
    Li Y; Kang M; Shi J; Wu K; Zhang S; Xu H
    Nano Lett; 2017 Dec; 17(12):7803-7808. PubMed ID: 29140716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi
    Zhang J; Xia Y; Peng L; Zhang Y; Li B; Shu L; Cen Y; Zhuang J; Zhu H; Zhan P; Zhang H
    Adv Sci (Weinh); 2024 May; 11(18):e2307691. PubMed ID: 38454650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile optical manipulation of trions, dark excitons and biexcitons through contrasting exciton-photon coupling.
    Li Z; Zhang XY; Ma R; Fu T; Zeng Y; Hu C; Cheng Y; Wang C; Wang Y; Feng Y; Taniguchi T; Watanabe K; Wang T; Liu X; Xu H
    Light Sci Appl; 2023 Dec; 12(1):295. PubMed ID: 38057305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton polaritons based on planar dielectric Si asymmetric nanogratings coupled with J-aggregated dyes film.
    Chai Z; Hu X; Gong Q
    Front Optoelectron; 2020 Mar; 13(1):4-11. PubMed ID: 36641583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polaritonic Hybrid-Epsilon-near-Zero Modes: Beating the Plasmonic Confinement vs Propagation-Length Trade-Off with Doped Cadmium Oxide Bilayers.
    Runnerstrom EL; Kelley KP; Folland TG; Nolen JR; Engheta N; Caldwell JD; Maria JP
    Nano Lett; 2019 Feb; 19(2):948-957. PubMed ID: 30582700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.
    Liu W; Lee B; Naylor CH; Ee HS; Park J; Johnson AT; Agarwal R
    Nano Lett; 2016 Feb; 16(2):1262-9. PubMed ID: 26784532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.