BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36399328)

  • 21. pH-Dependent Flavin Adenine Dinucleotide and Nicotinamide Adenine Dinucleotide Ultraviolet Resonance Raman (UVRR) Spectra at Intracellular Concentration.
    Merk V; Speiser E; Werncke W; Esser N; Kneipp J
    Appl Spectrosc; 2021 Aug; 75(8):994-1002. PubMed ID: 34076541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath).
    Blazyk JL; Lippard SJ
    Biochemistry; 2002 Dec; 41(52):15780-94. PubMed ID: 12501207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status.
    Ostrander JH; McMahon CM; Lem S; Millon SR; Brown JQ; Seewaldt VL; Ramanujam N
    Cancer Res; 2010 Jun; 70(11):4759-66. PubMed ID: 20460512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio alginolyticus--redox states of the FAD prosthetic group and mechanism of Ag+ inhibition.
    Steuber J; Krebs W; Dimroth P
    Eur J Biochem; 1997 Nov; 249(3):770-6. PubMed ID: 9395325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visualization of Breast Cancer Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox State.
    Hou J; Williams J; Botvinick EL; Potma EO; Tromberg BJ
    Cancer Res; 2018 May; 78(10):2503-2512. PubMed ID: 29535219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical Redox Imaging Detects the Effects of DEK Oncogene Knockdown on the Redox State of MDA-MB-231 Breast Cancer Cells.
    Wen Y; Xu HN; Privette Vinnedge L; Feng M; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):410-416. PubMed ID: 30758703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios.
    Sun N; Xu HN; Luo Q; Li LZ
    Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of mitochondrial NADH and FAD autofluorescence in live cells.
    Bartolomé F; Abramov AY
    Methods Mol Biol; 2015; 1264():263-70. PubMed ID: 25631020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying Age-Related Changes in Skin Wound Metabolism Using
    Jones JD; Ramser HE; Woessner AE; Veves A; Quinn KP
    Adv Wound Care (New Rochelle); 2020 Mar; 9(3):90-102. PubMed ID: 31993251
    [No Abstract]   [Full Text] [Related]  

  • 30. Optical Redox Imaging of Fixed Unstained Muscle Slides Reveals Useful Biological Information.
    Xu HN; Zhao H; Chellappa K; Davis JG; Nioka S; Baur JA; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):417-425. PubMed ID: 30977079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative Optical Redox Imaging of Melanoma Xenografts with Different Metastatic Potentials.
    Peng A; Xu HN; Moon L; Zhang P; Li LZ
    Cancers (Basel); 2024 Apr; 16(9):. PubMed ID: 38730620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autofluorescence spectroscopy in redox monitoring across cell confluencies.
    Yong D; Abdul Rahim AA; Thwin CS; Chen S; Zhai W; Win Naing M
    PLoS One; 2019; 14(12):e0226757. PubMed ID: 31851724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells.
    Hu L; Wang N; Cardona E; Walsh AJ
    Biomed Opt Express; 2020 Oct; 11(10):5674-5688. PubMed ID: 33149978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patient-derived cancer organoid tracking with wide-field one-photon redox imaging to assess treatment response.
    Gil DA; Deming D; Skala MC
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33754540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential Biomarker for Triple-Negative Breast Cancer Invasiveness by Optical Redox Imaging.
    Feng M; Xu HN; Jiang J; Li LZ
    Adv Exp Med Biol; 2021; 1269():247-251. PubMed ID: 33966225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical and glucose oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group.
    Miyawaki O; Wingard LB
    Biochim Biophys Acta; 1985 Jan; 838(1):60-8. PubMed ID: 3967047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging Redox State in Mouse Muscles of Different Ages.
    Moon L; Frederick DW; Baur JA; Li LZ
    Adv Exp Med Biol; 2017; 977():51-57. PubMed ID: 28685427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies.
    Heikal AA
    Biomark Med; 2010 Apr; 4(2):241-63. PubMed ID: 20406068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-specific immobilization of flavin adenine dinucleotide on indium/tin oxide electrodes through flavin adenine amino group.
    Narasimhan K; Wingard LB
    Appl Biochem Biotechnol; 1985 Jun; 11(3):221-32. PubMed ID: 4051479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The forensic implications of the relationship between the proteolytic enzymes activity and the changes in NADH and FAD fluorescence intensity in skeletal muscle when determining the time of death (experimental study)].
    Babkina AS; Sundukov DV; Golubev AM
    Sud Med Ekspert; 2021; 64(3):24-28. PubMed ID: 34013691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.