These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 36399651)
1. Tuning the Electrical Conductivity of a Flexible Fabric-Based Cu-HHTP Film through a Novel Redox Interaction between the Guest-Host System. Sun C; Wang W; Mu X; Zhang Y; Wang Y; Ma C; Jia Z; Zhu J; Wang C ACS Appl Mater Interfaces; 2022 Dec; 14(48):54266-54275. PubMed ID: 36399651 [TBL] [Abstract][Full Text] [Related]
2. Electrically regulating nonlinear optical limiting of metal-organic framework film. Ma ZZ; Li QH; Wang Z; Gu ZG; Zhang J Nat Commun; 2022 Oct; 13(1):6347. PubMed ID: 36289248 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. Ye RH; Chen JY; Huang DH; Wang YJ; Chen S Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735515 [TBL] [Abstract][Full Text] [Related]
4. Orientation Control of a Two-Dimensional Conductive Metal-Organic Framework Thin Film by a Pyridine Vapor-Assisted Dry Process. Chon S; Nakayama R; Iwamoto S; Kobayashi S; Shimizu R; Hitosugi T ACS Appl Mater Interfaces; 2023 Dec; 15(48):56057-56063. PubMed ID: 38009945 [TBL] [Abstract][Full Text] [Related]
5. Robust Spin Liquidity in 2D Metal-Organic Framework Cu Ninawe P; Jain A; Sangole M; Anas M; Ugale A; Malik VK; Yusuf SM; Singh K; Ballav N Chemistry; 2024 Jan; 30(4):e202303718. PubMed ID: 37955413 [TBL] [Abstract][Full Text] [Related]
6. Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications. Saha R; Gómez García CJ Chem Soc Rev; 2024 Sep; 53(19):9490-9559. PubMed ID: 39171560 [TBL] [Abstract][Full Text] [Related]
7. Self-Powered Infrared Photodetectors with Ultra-High Speed and Detectivity Based on Amorphous Cu-Based MOF Films. Gao S; Huang Y; Tan J; Xu J; Zhao L; Zhou W; Yang Z; Sun J; Gong H ACS Appl Mater Interfaces; 2023 Jul; 15(27):32637-32646. PubMed ID: 37384456 [TBL] [Abstract][Full Text] [Related]
9. Ag Nanoparticles-Induced Metallic Conductivity in Thin Films of 2D Metal-Organic Framework Cu Saha S; Ananthram KS; Hassan N; Ugale A; Tarafder K; Ballav N Nano Lett; 2023 Oct; 23(20):9326-9332. PubMed ID: 37843499 [TBL] [Abstract][Full Text] [Related]
10. High-Performance Ni Lu G; Zong B; Tao T; Yang Y; Li Q; Mao S ACS Sens; 2024 Apr; 9(4):1916-1926. PubMed ID: 38501291 [TBL] [Abstract][Full Text] [Related]
11. Conductive Covalent Organic Frameworks with Conductivity- and Pre-Reduction-Enhanced Electrochemiluminescence for Ultrasensitive Biosensor Construction. Zhang JL; Yao LY; Yang Y; Liang WB; Yuan R; Xiao DR Anal Chem; 2022 Mar; 94(8):3685-3692. PubMed ID: 35156809 [TBL] [Abstract][Full Text] [Related]
12. Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two-Dimensional Metal-Organic Frameworks. Wang D; Ostresh S; Streater D; He P; Nyakuchena J; Ma Q; Zhang X; Neu J; Brudvig GW; Huang J Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202309505. PubMed ID: 37872121 [TBL] [Abstract][Full Text] [Related]
13. Negative electrodes for supercapacitors with good performance using conductive bismuth-catecholate metal-organic frameworks. Chen S; Zhang H; Li X; Liu Y; Zhang M; Gao X; Chang X; Pu X; He C Dalton Trans; 2023 Apr; 52(15):4826-4834. PubMed ID: 36939173 [TBL] [Abstract][Full Text] [Related]
14. Conjugated Metal-Organic Macrocycles: Synthesis, Characterization, and Electrical Conductivity. Zasada LB; Guio L; Kamin AA; Dhakal D; Monahan M; Seidler GT; Luscombe CK; Xiao DJ J Am Chem Soc; 2022 Mar; 144(10):4515-4521. PubMed ID: 35255217 [TBL] [Abstract][Full Text] [Related]
15. Layer-by-Layer Assembled Conductive Metal-Organic Framework Nanofilms for Room-Temperature Chemiresistive Sensing. Yao MS; Lv XJ; Fu ZH; Li WH; Deng WH; Wu GD; Xu G Angew Chem Int Ed Engl; 2017 Dec; 56(52):16510-16514. PubMed ID: 29071780 [TBL] [Abstract][Full Text] [Related]
16. When Conductive MOFs Meet MnO Duan H; Zhao Z; Lu J; Hu W; Zhang Y; Li S; Zhang M; Zhu R; Pang H ACS Appl Mater Interfaces; 2021 Jul; 13(28):33083-33090. PubMed ID: 34235934 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of Multifunctional Electronic Textiles Using Oxidative Restructuring of Copper into a Cu-Based Metal-Organic Framework. Eagleton AM; Ko M; Stolz RM; Vereshchuk N; Meng Z; Mendecki L; Levenson AM; Huang C; MacVeagh KC; Mahdavi-Shakib A; Mahle JJ; Peterson GW; Frederick BG; Mirica KA J Am Chem Soc; 2022 Dec; 144(51):23297-23312. PubMed ID: 36512516 [TBL] [Abstract][Full Text] [Related]
18. In situ fast self-assembled preparation of dandelion-like Cu(OH) Jin Y; Yuan X; Ou L; Wu J; Hu J; Xue K; Xiong X Food Chem; 2024 Jul; 447():139013. PubMed ID: 38507950 [TBL] [Abstract][Full Text] [Related]
19. On-Demand Tunable Electrical Conductance Anisotropy in a MOF-Polymer Composite. Hong T; Lee C; Bak Y; Park G; Lee H; Kang S; Bae TH; Yoon DK; Park JG Small; 2024 May; 20(18):e2309469. PubMed ID: 38174621 [TBL] [Abstract][Full Text] [Related]
20. Charge Transport in Zirconium-Based Metal-Organic Frameworks. Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]