These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1. Transport of molybdate by Clostridium pasteurianum. Elliott BB; Mortenson LE J Bacteriol; 1975 Dec; 124(3):1295-1301. PubMed ID: 364 [TBL] [Abstract][Full Text] [Related]
2. Molybdate and tungstate transfer by rat ileum. Competitive inhibition by sulphate. Cardin CJ; Mason J Biochim Biophys Acta; 1976 Dec; 455(3):937-46. PubMed ID: 999946 [TBL] [Abstract][Full Text] [Related]
3. Regulation of molybdate transport by Clostridium pasteurianum. Elliott BB; Mortenson LE J Bacteriol; 1976 Aug; 127(2):770-9. PubMed ID: 956118 [TBL] [Abstract][Full Text] [Related]
4. Molybdate transport by Bradyrhizobium japonicum bacteroids. Maier RJ; Graham L J Bacteriol; 1988 Dec; 170(12):5613-9. PubMed ID: 3192511 [TBL] [Abstract][Full Text] [Related]
5. Molybdenum uptake in Escherichia coli K12. Lopez Corcuera G; Bastidas M; Dubourdieu M J Gen Microbiol; 1993 Aug; 139(8):1869-75. PubMed ID: 8409926 [TBL] [Abstract][Full Text] [Related]
6. Energy-dependent transport of nickel by Clostridium pasteurianum. Bryson MF; Drake HL J Bacteriol; 1988 Jan; 170(1):234-8. PubMed ID: 3335482 [TBL] [Abstract][Full Text] [Related]
7. Some properties of a new electrogenic transport system: the ammonium (methylammonium) carrier from Clostridium pasteurianum. Kleiner D; Fitzke E Biochim Biophys Acta; 1981 Feb; 641(1):138-47. PubMed ID: 7213710 [TBL] [Abstract][Full Text] [Related]
8. Evidence for proton motive force dependent transport of selenite by Clostridium pasteurianum. Bryant RD; Laishley EJ Can J Microbiol; 1989 Apr; 35(4):481-6. PubMed ID: 2743219 [TBL] [Abstract][Full Text] [Related]
9. In vitro activation of inactive nitrogenase component I with molybdate. Pienkos PT; Klevickis S; Brill WJ J Bacteriol; 1981 Jan; 145(1):248-56. PubMed ID: 6936396 [TBL] [Abstract][Full Text] [Related]
10. Role of molybdenum in dinitrogen fixation by Clostridium pasteurianum. Cardenas J; Mortenson LE J Bacteriol; 1975 Sep; 123(3):978-84. PubMed ID: 1158853 [TBL] [Abstract][Full Text] [Related]
11. Phosphate uptake by primary renal proximal tubule cell cultures grown in hormonally defined medium. Waqar MA; Seto J; Chung SD; Hiller-Grohol S; Taub M J Cell Physiol; 1985 Sep; 124(3):411-23. PubMed ID: 3850091 [TBL] [Abstract][Full Text] [Related]
12. Identification of molybdoproteins in Clostridium pasteurianum. Hinton SM; Mortenson LE J Bacteriol; 1985 May; 162(2):477-84. PubMed ID: 3857223 [TBL] [Abstract][Full Text] [Related]
13. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia. Tenenhouse HS; Scriver CR J Clin Invest; 1975 Mar; 55(3):644-54. PubMed ID: 1117070 [TBL] [Abstract][Full Text] [Related]
14. Biochemical studies on a novel vanadate- and molybdate-sensitive acid phosphatase from human epidermis. Mäkinen PL J Invest Dermatol; 1985 Aug; 85(2):118-24. PubMed ID: 3848460 [TBL] [Abstract][Full Text] [Related]
15. Stable isotope fractionation by Clostridium pasteurianum. 3. Effect of SeO32- on the physiology and associated sulfur isotope fractionation during SO32- and SO42- reductions. Harrison GI; Laishley EJ; Krouse HR Can J Microbiol; 1980 Aug; 26(8):952-8. PubMed ID: 7459717 [TBL] [Abstract][Full Text] [Related]
16. Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum. Leonhardt U; Andreesen JR Arch Microbiol; 1977 Dec; 115(3):277-84. PubMed ID: 23733 [TBL] [Abstract][Full Text] [Related]
17. In vitro reconstitution of demolybdosulfite oxidase by molybdate. Jones HP; Johnson JL; Rajagopalan KV J Biol Chem; 1977 Jul; 252(14):4988-93. PubMed ID: 17611 [TBL] [Abstract][Full Text] [Related]
18. Active transport of biotin in Escherichia coli K-12. Prakash O; Eisenberg MA J Bacteriol; 1974 Nov; 120(2):785-91. PubMed ID: 4616949 [TBL] [Abstract][Full Text] [Related]