These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36400023)

  • 1. Startling Acoustic Stimulation Has Task-Specific Effects on Intracortical Facilitation and Inhibition at Rest and During Visually Guided Isometric Elbow Flexion in Healthy Individuals.
    Chen YT; Li S; Zhang Y; Zhou P; Li S
    Motor Control; 2023 Jan; 27(1):96-111. PubMed ID: 36400023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of conditioning startling acoustic stimulation (SAS) on the corticospinal motor system: a SAS-TMS study.
    Chen YT; Li S; Zhou P; Li S
    Exp Brain Res; 2019 Aug; 237(8):1973-1980. PubMed ID: 31143970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A startling acoustic stimulation (SAS)-TMS approach to assess the reticulospinal system in healthy and stroke subjects.
    Chen YT; Li S; Zhou P; Li S
    J Neurol Sci; 2019 Apr; 399():82-88. PubMed ID: 30782527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions.
    Liang N; Murakami T; Funase K; Narita T; Kasai T
    Neurosci Lett; 2008 Mar; 433(2):135-40. PubMed ID: 18261851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different Effects of Startling Acoustic Stimuli (SAS) on TMS-Induced Responses at Rest and during Sustained Voluntary Contraction.
    Chen YT; Li S; Zhou P; Li S
    Front Hum Neurosci; 2016; 10():396. PubMed ID: 27547181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the motor cortical theta-burst transcranial-focused ultrasound stimulation on the contralateral motor cortex.
    Xia X; Wang Z; Zeng K; Nankoo JF; Darmani G; Tran S; Ding MYR; Chen R
    J Physiol; 2024 Jun; 602(12):2931-2943. PubMed ID: 38872383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction.
    Uehara K; Morishita T; Kubota S; Funase K
    Behav Brain Res; 2013 Mar; 240():33-45. PubMed ID: 23174210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Transcranial Static Magnetic Stimulation on Motor Cortex Evaluated by Different TMS Waveforms and Current Directions.
    Davila-Pérez P; Pascual-Leone A; Cudeiro J
    Neuroscience; 2019 Aug; 413():22-30. PubMed ID: 31195056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is it possible to compare inhibitory and excitatory intracortical circuits in face and hand primary motor cortex?
    Ginatempo F; Loi N; Manca A; Rothwell JC; Deriu F
    J Physiol; 2022 Aug; 600(15):3567-3583. PubMed ID: 35801987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TMS coil orientation and muscle activation influence lower limb intracortical excitability.
    Hand BJ; Opie GM; Sidhu SK; Semmler JG
    Brain Res; 2020 Nov; 1746():147027. PubMed ID: 32717277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological processes influencing motor-evoked potential duration with voluntary contraction.
    van den Bos MA; Geevasinga N; Menon P; Burke D; Kiernan MC; Vucic S
    J Neurophysiol; 2017 Mar; 117(3):1156-1162. PubMed ID: 28031404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strength-Duration Relationship in Paired-pulse Transcranial Magnetic Stimulation (TMS) and Its Implications for Repetitive TMS.
    Shirota Y; Sommer M; Paulus W
    Brain Stimul; 2016; 9(5):755-761. PubMed ID: 27234142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training intensity-dependent increases in corticospinal but not intracortical excitability after acute strength training.
    Colomer-Poveda D; Hortobágyi T; Keller M; Romero-Arenas S; Márquez G
    Scand J Med Sci Sports; 2020 Apr; 30(4):652-661. PubMed ID: 31785009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-pulse transcranial magnetic stimulation using multiple conditioning inputs. Normative MEP responses.
    Calancie B; Wang D; Young E; Alexeeva N
    Exp Brain Res; 2018 Apr; 236(4):1205-1218. PubMed ID: 29473092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased excitability and reduced intracortical inhibition in the ipsilateral primary motor cortex during a fine-motor manipulation task.
    Morishita T; Ninomiya M; Uehara K; Funase K
    Brain Res; 2011 Jan; 1371():65-73. PubMed ID: 21093420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks.
    Maruyama A; Matsunaga K; Tanaka N; Rothwell JC
    Clin Neurophysiol; 2006 Apr; 117(4):864-70. PubMed ID: 16495147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation.
    Kojima S; Onishi H; Sugawara K; Kirimoto H; Suzuki M; Tamaki H
    BMC Neurosci; 2013 Apr; 14():43. PubMed ID: 23547559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute High-Intensity Interval Exercise Modulates Corticospinal Excitability in Older Adults.
    Neva JL; Greeley B; Chau B; Ferris JK; Jones CB; Denyer R; Hayward KS; Campbell KL; Boyd LA
    Med Sci Sports Exerc; 2022 Apr; 54(4):673-682. PubMed ID: 34939609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle pain differentially modulates short interval intracortical inhibition and intracortical facilitation in primary motor cortex.
    Schabrun SM; Hodges PW
    J Pain; 2012 Feb; 13(2):187-94. PubMed ID: 22227117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related differences in short- and long-interval intracortical inhibition in a human hand muscle.
    Opie GM; Semmler JG
    Brain Stimul; 2014; 7(5):665-72. PubMed ID: 25088463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.