BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36400378)

  • 1. A large and rich EEG dataset for modeling human visual object recognition.
    Gifford AT; Dwivedi K; Roig G; Cichy RM
    Neuroimage; 2022 Dec; 264():119754. PubMed ID: 36400378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual Object Recognition From Single-Trial EEG Signals Using Machine Learning Wrapper Techniques.
    Yavandhasani M; Ghaderi F
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2176-2183. PubMed ID: 34951838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ecologically motivated image dataset for deep learning yields better models of human vision.
    Mehrer J; Spoerer CJ; Jones EC; Kriegeskorte N; Kietzmann TC
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human EEG recordings for 1,854 concepts presented in rapid serial visual presentation streams.
    Grootswagers T; Zhou I; Robinson AK; Hebart MN; Carlson TA
    Sci Data; 2022 Jan; 9(1):3. PubMed ID: 35013331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-trial classification of EEG in a visual object task using ICA and machine learning.
    Stewart AX; Nuthmann A; Sanguinetti G
    J Neurosci Methods; 2014 May; 228():1-14. PubMed ID: 24613798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence.
    Allen EJ; St-Yves G; Wu Y; Breedlove JL; Prince JS; Dowdle LT; Nau M; Caron B; Pestilli F; Charest I; Hutchinson JB; Naselaris T; Kay K
    Nat Neurosci; 2022 Jan; 25(1):116-126. PubMed ID: 34916659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are Deep Neural Networks Adequate Behavioral Models of Human Visual Perception?
    Wichmann FA; Geirhos R
    Annu Rev Vis Sci; 2023 Sep; 9():501-524. PubMed ID: 37001509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A zero-shot learning approach to the development of brain-computer interfaces for image retrieval.
    McCartney B; Martinez-Del-Rincon J; Devereux B; Murphy B
    PLoS One; 2019; 14(9):e0214342. PubMed ID: 31525201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep problems with neural network models of human vision.
    Bowers JS; Malhotra G; Dujmović M; Llera Montero M; Tsvetkov C; Biscione V; Puebla G; Adolfi F; Hummel JE; Heaton RF; Evans BD; Mitchell J; Blything R
    Behav Brain Sci; 2022 Dec; 46():e385. PubMed ID: 36453586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A visual encoding model based on deep neural networks and transfer learning for brain activity measured by functional magnetic resonance imaging.
    Zhang C; Qiao K; Wang L; Tong L; Hu G; Zhang RY; Yan B
    J Neurosci Methods; 2019 Sep; 325():108318. PubMed ID: 31255596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human EEG and artificial neural networks reveal disentangled representations of object real-world size in natural images.
    Lu Z; Golomb JD
    bioRxiv; 2024 Mar; ():. PubMed ID: 37662197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dataset for evaluating one-shot categorization of novel object classes.
    Morgenstern Y; Schmidt F; Fleming RW
    Data Brief; 2020 Apr; 29():105302. PubMed ID: 32140517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning.
    Dar MN; Akram MU; Yuvaraj R; Gul Khawaja S; Murugappan M
    Comput Biol Med; 2022 May; 144():105327. PubMed ID: 35303579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ventral and Dorsal Stream EEG Channels: Key Features for EEG-Based Object Recognition and Identification.
    Leong D; Do TT; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4862-4870. PubMed ID: 38051624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
    Barrett DG; Morcos AS; Macke JH
    Curr Opin Neurobiol; 2019 Apr; 55():55-64. PubMed ID: 30785004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context and hand posture modulate the neural dynamics of tool-object perception.
    Natraj N; Poole V; Mizelle JC; Flumini A; Borghi AM; Wheaton LA
    Neuropsychologia; 2013 Feb; 51(3):506-19. PubMed ID: 23261936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. There Is a "U" in Clutter: Evidence for Robust Sparse Codes Underlying Clutter Tolerance in Human Vision.
    Cox PH; Riesenhuber M
    J Neurosci; 2015 Oct; 35(42):14148-59. PubMed ID: 26490856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.