These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36400901)

  • 1. Assessment of heavy metal accumulation potential of aquatic plants for bioindication and bioremediation of aquatic environment.
    Petrov DS; Korotaeva AE; Pashkevich MA; Chukaeva MA
    Environ Monit Assess; 2022 Nov; 195(1):122. PubMed ID: 36400901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile.
    Fawzy MA; Badr Nel-S; El-Khatib A; Abo-El-Kassem A
    Environ Monit Assess; 2012 Mar; 184(3):1753-71. PubMed ID: 21562793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal variations of some heavy metals in common reed (Phragmites australis (Cav.) Trin. Ex. Steudel) and narrow-leaved cattail (Typha angustifolia L.) in Eğirdir Lake (Turkey) and the possibility of using for phytoremediation of these macrophytes.
    Özçelik Ş; Tekin-Özan S
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):112194-112205. PubMed ID: 37831255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system.
    Hejna M; Moscatelli A; Stroppa N; Onelli E; Pilu S; Baldi A; Rossi L
    Chemosphere; 2020 Feb; 241():125018. PubMed ID: 31683415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.
    Klink A
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence-based approaches to evaluate and optimize phytoremediation potential of in vitro regenerated aquatic macrophyte Ceratophyllum demersum L.
    Aasim M; Ali SA; Aydin S; Bakhsh A; Sogukpinar C; Karatas M; Khawar KM; Aydin ME
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):40206-40217. PubMed ID: 36607572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioindication of soil pollution in the delta of the Don River and the coast of the Taganrog Bay with heavy metals based on anatomical, morphological and biogeochemical studies of macrophyte (Typha australis Schum. & Thonn).
    Minkina TM; Fedorenko GM; Nevidomskaya DG; Pol'shina TN; Fedorenko AG; Chaplygin VA; Mandzhieva SS; Sushkova SN; Hassan TM
    Environ Geochem Health; 2021 Apr; 43(4):1563-1581. PubMed ID: 31312968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Typha latifolia (broadleaf cattail) as bioindicator of different types of pollution in aquatic ecosystems-application of self-organizing feature map (neural network).
    Klink A; Polechońska L; Cegłowska A; Stankiewicz A
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14078-86. PubMed ID: 27044291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability.
    Haghnazar H; Hudson-Edwards KA; Kumar V; Pourakbar M; Mahdavianpour M; Aghayani E
    Chemosphere; 2021 Dec; 285():131446. PubMed ID: 34246092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variation of heavy metals and uptake potential by Typha domingensis in a tropical reservoir in the midlands region, Zimbabwe.
    Dube T; Mhangwa G; Makaka C; Parirenyatwa B; Muteveri T
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10097-10105. PubMed ID: 30756354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland.
    Rana V; Maiti SK
    Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytomitigation potential and adaptive responses of helophyte Typha latifolia L. to copper smelter-influenced heavily multi-metal contamination.
    Shiryaev G; Maleva M; Borisova G; Tripti ; Voropaeva O; Kumar A
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):38821-38834. PubMed ID: 36862298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of heavy metal accumulation ability in rainwater by 10 sponge city plant species.
    Ma W; Zhao B; Ma J
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26733-26747. PubMed ID: 31292879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiols as biomarkers of heavy metal tolerance in the aquatic macrophytes of Middle Urals, Russia.
    Borisova G; Chukina N; Maleva M; Kumar A; Prasad MN
    Int J Phytoremediation; 2016 Oct; 18(10):1037-45. PubMed ID: 27167595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trace metal concentrations and their transfer from sediment to leaves of four common aquatic macrophytes.
    Łojko R; Polechońska L; Klink A; Kosiba P
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):15123-31. PubMed ID: 26004561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquatic macrophytes mediated remediation of toxic metals from moderately contaminated industrial effluent.
    Saraswat S; Rai DJPN
    Int J Phytoremediation; 2018 Jul; 20(9):876-884. PubMed ID: 29873544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergent (branched bur-reed-Sparganium erectum L.) and submergent (river water-crowfoot-Ranunculus fluitans Wimm., 1841) aquatic plants as metal biosorbents under varying water pH conditions in laboratory conditions.
    Senze M; Kowalska-Góralska M; Czyż K
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):92053-92067. PubMed ID: 37480537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of heavy metals and total petroleum hydrocarbon and nutrients enhancement of Typha latifolia in petroleum secondary effluent for biomass growth.
    Ahmad A
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5777-5786. PubMed ID: 34431049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.