BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36401031)

  • 1. Morpholino-Mediated Exons 28-29 Skipping of Dysferlin and Characterization of Multiexon-skipped Dysferlin using RT-PCR, Immunoblotting, and Membrane Wounding Assay.
    Anwar S; Yokota T
    Methods Mol Biol; 2023; 2587():183-196. PubMed ID: 36401031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic exon skipping for dysferlinopathies?
    Aartsma-Rus A; Singh KH; Fokkema IF; Ginjaar IB; van Ommen GJ; den Dunnen JT; van der Maarel SM
    Eur J Hum Genet; 2010 Aug; 18(8):889-94. PubMed ID: 20145676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DYSF mutation analysis in a group of Chinese patients with dysferlinopathy.
    Zhao Z; Hu J; Sakiyama Y; Okamoto Y; Higuchi I; Li N; Shen H; Takashima H
    Clin Neurol Neurosurg; 2013 Aug; 115(8):1234-7. PubMed ID: 23254335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exon 32 Skipping of Dysferlin Rescues Membrane Repair in Patients' Cells.
    Barthélémy F; Blouin C; Wein N; Mouly V; Courrier S; Dionnet E; Kergourlay V; Mathieu Y; Garcia L; Butler-Browne G; Lamaze C; Lévy N; Krahn M; Bartoli M
    J Neuromuscul Dis; 2015 Sep; 2(3):281-290. PubMed ID: 27858744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Novel Antisense-Mediated Exon Skipping Targets in DYSF for Therapeutic Treatment of Dysferlinopathy.
    Lee JJA; Maruyama R; Duddy W; Sakurai H; Yokota T
    Mol Ther Nucleic Acids; 2018 Dec; 13():596-604. PubMed ID: 30439648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping.
    Wein N; Avril A; Bartoli M; Beley C; Chaouch S; Laforêt P; Behin A; Butler-Browne G; Mouly V; Krahn M; Garcia L; Lévy N
    Hum Mutat; 2010 Feb; 31(2):136-42. PubMed ID: 19953532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysferlinopathies: Clinical and genetic variability.
    Ivanova A; Smirnikhina S; Lavrov A
    Clin Genet; 2022 Dec; 102(6):465-473. PubMed ID: 36029111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-length dysferlin expression driven by engineered human dystrophic blood derived CD133+ stem cells.
    Meregalli M; Navarro C; Sitzia C; Farini A; Montani E; Wein N; Razini P; Beley C; Cassinelli L; Parolini D; Belicchi M; Parazzoli D; Garcia L; Torrente Y
    FEBS J; 2013 Dec; 280(23):6045-60. PubMed ID: 24028392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction of pseudoexon splicing caused by a novel intronic dysferlin mutation.
    Dominov JA; Uyan Ö; McKenna-Yasek D; Nallamilli BRR; Kergourlay V; Bartoli M; Levy N; Hudson J; Evangelista T; Lochmuller H; Krahn M; Rufibach L; Hegde M; Brown RH
    Ann Clin Transl Neurol; 2019 Apr; 6(4):642-654. PubMed ID: 31019989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel DYSF mutations in Thai patients with distal myopathy.
    Liewluck T; Pongpakdee S; Witoonpanich R; Sangruchi T; Pho-Iam T; Limwongse C; Thongnoppakhun W; Boonyapisit K; Sopassathit V; Phudhichareonrat S; Suthiponpaisan U; Raksadawan N; Goto K; Hayashi YK; Nishino I
    Clin Neurol Neurosurg; 2009 Sep; 111(7):613-8. PubMed ID: 19493611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Multiexon Skipping by Antisense PMOs in Dystrophic Dog and Exon 7-Deleted DMD Patient.
    Nakamura A; Aoki Y; Tsoumpra M; Yokota T; Takeda S
    Methods Mol Biol; 2018; 1828():151-163. PubMed ID: 30171540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysferlin mutation analysis in a group of Italian patients with limb-girdle muscular dystrophy and Miyoshi myopathy.
    Kawabe K; Goto K; Nishino I; Angelini C; Hayashi YK
    Eur J Neurol; 2004 Oct; 11(10):657-61. PubMed ID: 15469449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies.
    Nguyen K; Bassez G; Bernard R; Krahn M; Labelle V; Figarella-Branger D; Pouget J; Hammouda el H; Béroud C; Urtizberea A; Eymard B; Leturcq F; Lévy N
    Hum Mutat; 2005 Aug; 26(2):165. PubMed ID: 16010686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse engineering gene network identifies new dysferlin-interacting proteins.
    Cacciottolo M; Belcastro V; Laval S; Bushby K; di Bernardo D; Nigro V
    J Biol Chem; 2011 Feb; 286(7):5404-13. PubMed ID: 21119217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational research and therapeutic perspectives in dysferlinopathies.
    Barthélémy F; Wein N; Krahn M; Lévy N; Bartoli M
    Mol Med; 2011; 17(9-10):875-82. PubMed ID: 21556485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limb Girdle Muscular Dystrophy Type 2B (LGMD2B): Diagnosis and Therapeutic Possibilities.
    Poudel BH; Fletcher S; Wilton SD; Aung-Htut M
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antisense-Mediated Skipping of Dysferlin Exons in Control and Dysferlinopathy Patient-Derived Cells.
    Verwey N; Gazzoli I; Krause S; Mamchaoui K; Mouly V; Aartsma-Rus A
    Nucleic Acid Ther; 2020 Apr; 30(2):71-79. PubMed ID: 31873062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Dysferlinopathies Conundrum: Clinical Spectra, Disease Mechanism and Genetic Approaches for Treatments.
    Anwar S; Yokota T
    Biomolecules; 2024 Feb; 14(3):. PubMed ID: 38540676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.