BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36401094)

  • 21. Nuclear Receptor LRH-1 Functions to Promote Castration-Resistant Growth of Prostate Cancer via Its Promotion of Intratumoral Androgen Biosynthesis.
    Xiao L; Wang Y; Xu K; Hu H; Xu Z; Wu D; Wang Z; You W; Ng CF; Yu S; Chan FL
    Cancer Res; 2018 May; 78(9):2205-2218. PubMed ID: 29438990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of CDK9 activity compromises global splicing in prostate cancer cells.
    Hu Q; Poulose N; Girmay S; Helevä A; Doultsinos D; Gondane A; Steele RE; Liu X; Loda M; Liu S; Tang DG; Mills IG; Itkonen HM
    RNA Biol; 2021 Nov; 18(sup2):722-729. PubMed ID: 34592899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of castration-dependent and -independent driver genes and pathways in castration-resistant prostate cancer (CRPC).
    Li Y; Shi H; Zhao Z; Xu M
    BMC Urol; 2022 Oct; 22(1):162. PubMed ID: 36258196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Angiogenin mediates androgen-stimulated prostate cancer growth and enables castration resistance.
    Li S; Hu MG; Sun Y; Yoshioka N; Ibaragi S; Sheng J; Sun G; Kishimoto K; Hu GF
    Mol Cancer Res; 2013 Oct; 11(10):1203-14. PubMed ID: 23851444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer.
    Lam HM; Ouyang B; Chen J; Ying J; Wang J; Wu CL; Jia L; Medvedovic M; Vessella RL; Ho SM
    Endocr Relat Cancer; 2014; 21(6):903-14. PubMed ID: 25287069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Platelet-Synthesized Testosterone in Men with Prostate Cancer Induces Androgen Receptor Signaling.
    Zaslavsky AB; Gloeckner-Kalousek A; Adams M; Putluri N; Venghatakrishnan H; Li H; Morgan TM; Feng FY; Tewari M; Sreekumar A; Palapattu GS
    Neoplasia; 2015 Jun; 17(6):490-6. PubMed ID: 26152357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Checkpoint Kinase 2 Negatively Regulates Androgen Sensitivity and Prostate Cancer Cell Growth.
    Ta HQ; Ivey ML; Frierson HF; Conaway MR; Dziegielewski J; Larner JM; Gioeli D
    Cancer Res; 2015 Dec; 75(23):5093-105. PubMed ID: 26573794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation of the androgen receptor at Ser81 is co-sustained by CDK1 and CDK9 and leads to AR-mediated transactivation in prostate cancer.
    Gao X; Liang J; Wang L; Zhang Z; Yuan P; Wang J; Gao Y; Ma F; Calagua C; Ye H; Voznesensky O; Wang S; Wang T; Liu J; Chen S; Liu X
    Mol Oncol; 2021 Jul; 15(7):1901-1920. PubMed ID: 33932081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MYBL2 disrupts the Hippo-YAP pathway and confers castration resistance and metastatic potential in prostate cancer.
    Li Q; Wang M; Hu Y; Zhao E; Li J; Ren L; Wang M; Xu Y; Liang Q; Zhang D; Lai Y; Liu S; Peng X; Zhu C; Ye L
    Theranostics; 2021; 11(12):5794-5812. PubMed ID: 33897882
    [No Abstract]   [Full Text] [Related]  

  • 30. Targeting the Hsp40/Hsp70 Chaperone Axis as a Novel Strategy to Treat Castration-Resistant Prostate Cancer.
    Moses MA; Kim YS; Rivera-Marquez GM; Oshima N; Watson MJ; Beebe KE; Wells C; Lee S; Zuehlke AD; Shao H; Bingman WE; Kumar V; Malhotra SV; Weigel NL; Gestwicki JE; Trepel JB; Neckers LM
    Cancer Res; 2018 Jul; 78(14):4022-4035. PubMed ID: 29764864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting PHB1 to inhibit castration-resistant prostate cancer progression in vitro and in vivo.
    Liu J; Zhang R; Su T; Zhou Q; Gao L; He Z; Wang X; Zhao J; Xing Y; Sun F; Cai W; Wang X; Han J; Qin R; Désaubry L; Han B; Chen W
    J Exp Clin Cancer Res; 2023 May; 42(1):128. PubMed ID: 37210546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclin-dependent kinase 12 deficiency reprogrammes cellular metabolism to alleviate ferroptosis potential and promote the progression of castration-resistant prostate cancer.
    Zhang H; Zhou Y; Feng Y; Hou W; Chen Y; Xing Z; Zhang Y; Wei Q; Yin Y; Guo J; Hu H
    Clin Transl Med; 2024 May; 14(5):e1678. PubMed ID: 38736108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. T-LAK cell-originated protein kinase (TOPK) enhances androgen receptor splice variant (ARv7) and drives androgen-independent growth in prostate cancer.
    Alhawas L; Amin KS; Salla B; Banerjee PP
    Carcinogenesis; 2021 Apr; 42(3):423-435. PubMed ID: 33185682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Androgen receptor co-regulatory networks in castration-resistant prostate cancer.
    Sung YY; Cheung E
    Endocr Relat Cancer; 2014 Feb; 21(1):R1-R11. PubMed ID: 24152433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting the androgen receptor signaling pathway in advanced prostate cancer.
    Chung C; Abboud K
    Am J Health Syst Pharm; 2022 Jul; 79(15):1224-1235. PubMed ID: 35390118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Androgen receptors in hormone-dependent and castration-resistant prostate cancer.
    Shafi AA; Yen AE; Weigel NL
    Pharmacol Ther; 2013 Dec; 140(3):223-38. PubMed ID: 23859952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RGS2 is prognostic for development of castration resistance and cancer-specific survival in castration-resistant prostate cancer.
    Linder A; Larsson K; Welén K; Damber JE
    Prostate; 2020 Aug; 80(11):799-810. PubMed ID: 32449815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CDK6 is upregulated and may be a potential therapeutic target in enzalutamide-resistant castration-resistant prostate cancer.
    Chen X; Wu Y; Wang X; Xu C; Wang L; Jian J; Wu D; Wu G
    Eur J Med Res; 2022 Jul; 27(1):105. PubMed ID: 35780240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BCAR4 activates GLI2 signaling in prostate cancer to contribute to castration resistance.
    Cai Z; Wu Y; Li Y; Ren J; Wang L
    Aging (Albany NY); 2018 Dec; 10(12):3702-3712. PubMed ID: 30513511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis.
    Hagberg Thulin M; Nilsson ME; Thulin P; Céraline J; Ohlsson C; Damber JE; Welén K
    Mol Cell Endocrinol; 2016 Feb; 422():182-191. PubMed ID: 26586211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.