BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36401516)

  • 1. Redox Modulation of Mitochondrial Proteins in the Neurotoxicant Models of Parkinson's Disease.
    Sarkar A; Rasheed MSU; Singh MP
    Antioxid Redox Signal; 2023 Apr; 38(10-12):824-852. PubMed ID: 36401516
    [No Abstract]   [Full Text] [Related]  

  • 2. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease.
    Garcia-Garcia A; Zavala-Flores L; Rodriguez-Rocha H; Franco R
    Antioxid Redox Signal; 2012 Dec; 17(12):1764-84. PubMed ID: 22369136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox imbalance in Parkinson's disease.
    Chinta SJ; Andersen JK
    Biochim Biophys Acta; 2008 Nov; 1780(11):1362-7. PubMed ID: 18358848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Dysfunction Combined with High Calcium Load Leads to Impaired Antioxidant Defense Underlying the Selective Loss of Nigral Dopaminergic Neurons.
    Ricke KM; Paß T; Kimoloi S; Fährmann K; Jüngst C; Schauss A; Baris OR; Aradjanski M; Trifunovic A; Eriksson Faelker TM; Bergami M; Wiesner RJ
    J Neurosci; 2020 Feb; 40(9):1975-1986. PubMed ID: 32005765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for Oxidative Pathways in the Pathogenesis of PD: Are Antioxidants Candidate Drugs to Ameliorate Disease Progression?
    Leathem A; Ortiz-Cerda T; Dennis JM; Witting PK
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson's disease: The therapeutic role of Nrf2 activators.
    Jayaram S; Krishnamurthy PT
    Neurochem Int; 2021 May; 145():105014. PubMed ID: 33689805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.
    Zuo L; Motherwell MS
    Gene; 2013 Dec; 532(1):18-23. PubMed ID: 23954870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent updates in redox regulation and free radical scavenging effects by herbal products in experimental models of Parkinson's disease.
    Koppula S; Kumar H; More SV; Lim HW; Hong SM; Choi DK
    Molecules; 2012 Sep; 17(10):11391-420. PubMed ID: 23014498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current perspective of mitochondrial biology in Parkinson's disease.
    Ammal Kaidery N; Thomas B
    Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of cellular redox environment as a novel therapeutic strategy for Parkinson's disease.
    Deus CM; Teixeira J; Raimundo N; Tucci P; Borges F; Saso L; Oliveira PJ
    Eur J Clin Invest; 2022 Oct; 52(10):e13820. PubMed ID: 35638352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Complex I Reversible S-Nitrosation Improves Bioenergetics and Is Protective in Parkinson's Disease.
    Milanese C; Tapias V; Gabriels S; Cerri S; Levandis G; Blandini F; Tresini M; Shiva S; Greenamyre JT; Gladwin MT; Mastroberardino PG
    Antioxid Redox Signal; 2018 Jan; 28(1):44-61. PubMed ID: 28816057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial mechanisms of redox cycling agents implicated in Parkinson's disease.
    Lopert P; Patel M
    J Neural Transm (Vienna); 2016 Feb; 123(2):113-23. PubMed ID: 25749885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria as an easy target to oxidative stress events in Parkinson's disease.
    Reale M; Pesce M; Priyadarshini M; Kamal MA; Patruno A
    CNS Neurol Disord Drug Targets; 2012 Jun; 11(4):430-8. PubMed ID: 22483310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease.
    Gordon R; Singh N; Lawana V; Ghosh A; Harischandra DS; Jin H; Hogan C; Sarkar S; Rokad D; Panicker N; Anantharam V; Kanthasamy AG; Kanthasamy A
    Neurobiol Dis; 2016 Sep; 93():96-114. PubMed ID: 27151770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic modulators associated with regulatory surveillance of mitochondrial quality control, play a key role in regulating stress pathways and longevity in C. elegans.
    Sarkar A; Hameed R; Mishra A; Bhatta RS; Nazir A
    Life Sci; 2022 Feb; 290():120226. PubMed ID: 34953889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic review of molecular approaches that link mitochondrial dysfunction and neuroinflammation in Parkinson's disease.
    Mani S; Sevanan M; Krishnamoorthy A; Sekar S
    Neurol Sci; 2021 Nov; 42(11):4459-4469. PubMed ID: 34480241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulation of the Mitochondrial Unfolded Protein Response Induces Non-Apoptotic Dopaminergic Neurodegeneration in
    Martinez BA; Petersen DA; Gaeta AL; Stanley SP; Caldwell GA; Caldwell KA
    J Neurosci; 2017 Nov; 37(46):11085-11100. PubMed ID: 29030433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geraniol Protects Against the Protein and Oxidative Stress Induced by Rotenone in an In Vitro Model of Parkinson's Disease.
    Rekha KR; Inmozhi Sivakamasundari R
    Neurochem Res; 2018 Oct; 43(10):1947-1962. PubMed ID: 30141137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.