These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 36401645)

  • 21. Alkali-Resistant NO
    Zhou G; Maitarad P; Wang P; Han L; Yan T; Li H; Zhang J; Shi L; Zhang D
    Environ Sci Technol; 2020 Oct; 54(20):13314-13321. PubMed ID: 32960572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitration-Promoted Vanadate Catalysts for Low-Temperature Selective Catalytic Reduction of NO
    Kim SI; Choi YJ; Lee MS; Lee DH
    ACS Omega; 2023 Sep; 8(37):34152-34159. PubMed ID: 37744798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CuO modified vanadium-based SCR catalysts for Hg
    Wang H; Wang B; Zhou J; Li G; Zhang D; Ma Z; Xiong R; Sun Q; Xu WQ
    J Environ Manage; 2019 Jun; 239():17-22. PubMed ID: 30877969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The promoting/inhibiting effect of water vapor on the selective catalytic reduction of NO
    Gui R; Yan Q; Xue T; Gao Y; Li Y; Zhu T; Wang Q
    J Hazard Mater; 2022 Oct; 439():129665. PubMed ID: 35907283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.
    Lehtoranta K; Vesala H; Koponen P; Korhonen S
    Environ Sci Technol; 2015 Apr; 49(7):4735-41. PubMed ID: 25780953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential Risk of Significant N
    Xing J; Xue Q; Chen J; Mi J; Chen X; Shi J; Liu Z; Li J
    Environ Sci Technol; 2023 Dec; 57(51):21866-21875. PubMed ID: 38095886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excellent activity and selectivity of Pd/ZSM-5 catalyst in the selective catalytic reduction of NO
    Moon S; Park DC; Lee E; You YW; Heo I; Kim YJ; Kim DH
    Environ Res; 2023 Jun; 227():115707. PubMed ID: 36931382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective Catalytic Reduction of NO
    Yentekakis IV; Georgiadis AG; Drosou C; Charisiou ND; Goula MA
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multipollutant Control (MPC) of Flue Gas from Stationary Sources Using SCR Technology: A Critical Review.
    Wang D; Chen Q; Zhang X; Gao C; Wang B; Huang X; Peng Y; Li J; Lu C; Crittenden J
    Environ Sci Technol; 2021 Mar; 55(5):2743-2766. PubMed ID: 33569951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent progress of low-temperature selective catalytic reduction of NO
    Guo RT; Qin B; Wei LG; Yin TY; Zhou J; Pan WG
    Phys Chem Chem Phys; 2022 Mar; 24(11):6363-6382. PubMed ID: 35253031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.
    Xu C; Liu J; Zhao Z; Yu F; Cheng K; Wei Y; Duan A; Jiang G
    J Environ Sci (China); 2015 May; 31():74-80. PubMed ID: 25968261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced activity of vanadia supported on microporous titania for the selective catalytic reduction of NO with NH
    Jeon SW; Song I; Lee H; Kim DH
    Chemosphere; 2021 Jul; 275():130105. PubMed ID: 33676281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atom Pairing Enhances Sulfur Resistance in Low-Temperature SCR via Upshifting the Lowest Unoccupied States of Cerium.
    Fang X; Qin T; Chen J; Ma Z; Liu X; Tang X
    Environ Sci Technol; 2024 Jul; 58(27):12272-12280. PubMed ID: 38934332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmentally-benign catalysts for the selective catalytic reduction of NO(x) from diesel engines: structure-activity relationship and reaction mechanism aspects.
    Liu F; Yu Y; He H
    Chem Commun (Camb); 2014 Aug; 50(62):8445-63. PubMed ID: 24819654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of low-temperature selective catalytic reduction of NO
    Ge T; Zhu B; Sun Y; Song W; Fang Q; Zhong Y
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33067-33075. PubMed ID: 31512139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective catalytic reduction of nitrogen oxides over a modified silicoaluminophosphate commercial zeolite.
    Petitto C; Delahay G
    J Environ Sci (China); 2018 Mar; 65():246-252. PubMed ID: 29548395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unique
    Liu S; Huang Y; Li S; Lin Q; Wang J; Xie S; Liu F; Xu H; Chen Y
    Environ Sci Technol; 2023 Oct; 57(43):16685-16694. PubMed ID: 37864569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides.
    Paolucci C; Di Iorio JR; Schneider WF; Gounder R
    Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Density functional theory (DFT) studies of vanadium-titanium based selective catalytic reduction (SCR) catalysts.
    Zhao Z; Li E; Qin Y; Liu X; Zou Y; Wu H; Zhu T
    J Environ Sci (China); 2020 Apr; 90():119-137. PubMed ID: 32081309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overview of mechanisms of Fe-based catalysts for the selective catalytic reduction of NO
    Luo J; Xu S; Xu H; Zhang Z; Chen X; Li M; Tie Y; Zhang H; Chen G; Jiang C
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):14424-14465. PubMed ID: 38291211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.