BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36401738)

  • 1. CRISPR/Cas9 genome-editing applied to MdPGT1 in apple results in reduced foliar phloridzin without impacting plant growth.
    Miranda S; Piazza S; Nuzzo F; Li M; Lagrèze J; Mithöfer A; Cestaro A; Tarkowska D; Espley R; Dare A; Malnoy M; Martens S
    Plant J; 2023 Jan; 113(1):92-105. PubMed ID: 36401738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silencing a phloretin-specific glycosyltransferase perturbs both general phenylpropanoid biosynthesis and plant development.
    Dare AP; Yauk YK; Tomes S; McGhie TK; Rebstock RS; Cooney JM; Atkinson RG
    Plant J; 2017 Jul; 91(2):237-250. PubMed ID: 28370633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species.
    Zhou K; Hu L; Li P; Gong X; Ma F
    Plant Sci; 2017 Dec; 265():131-145. PubMed ID: 29223335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of enoyl reductase genes in phloridzin biosynthesis in apple.
    Dare AP; Tomes S; Cooney JM; Greenwood DR; Hellens RP
    Plant Physiol Biochem; 2013 Nov; 72():54-61. PubMed ID: 23510577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MdUGT88F1-Mediated Phloridzin Biosynthesis Regulates Apple Development and
    Zhou K; Hu L; Li Y; Chen X; Zhang Z; Liu B; Li P; Gong X; Ma F
    Plant Physiol; 2019 Aug; 180(4):2290-2305. PubMed ID: 31227620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MdUGT88F1-mediated phloridzin biosynthesis coordinates carbon and nitrogen accumulation in apple.
    Zhou K; Hu L; Yue H; Zhang Z; Zhang J; Gong X; Ma F
    J Exp Bot; 2022 Jan; 73(3):886-902. PubMed ID: 34486649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification and biochemical characterization of the UGT88F subfamily in Malus x domestica Borkh.
    Elejalde-Palmett C; Billet K; Lanoue A; De Craene JO; Glévarec G; Pichon O; Clastre M; Courdavault V; St-Pierre B; Giglioli-Guivarc'h N; Dugé de Bernonville T; Besseau S
    Phytochemistry; 2019 Jan; 157():135-144. PubMed ID: 30399496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9-mediated genome editing in apple and grapevine.
    Osakabe Y; Liang Z; Ren C; Nishitani C; Osakabe K; Wada M; Komori S; Malnoy M; Velasco R; Poli M; Jung MH; Koo OJ; Viola R; Nagamangala Kanchiswamy C
    Nat Protoc; 2018 Dec; 13(12):2844-2863. PubMed ID: 30390050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic mechanisms in the repression of flowering by gibberellins in apple (Malus x domestica Borkh.).
    Zhang S; Gottschalk C; van Nocker S
    BMC Genomics; 2019 Oct; 20(1):747. PubMed ID: 31619173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple.
    Jugdé H; Nguy D; Moller I; Cooney JM; Atkinson RG
    FEBS J; 2008 Aug; 275(15):3804-14. PubMed ID: 18573104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system.
    Pompili V; Dalla Costa L; Piazza S; Pindo M; Malnoy M
    Plant Biotechnol J; 2020 Mar; 18(3):845-858. PubMed ID: 31495052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 gene editing and rapid detection of gene-edited mutants using high-resolution melting in the apple scab fungus, Venturia inaequalis.
    Rocafort M; Arshed S; Hudson D; Sidhu JS; Bowen JK; Plummer KM; Bradshaw RE; Johnson RD; Johnson LJ; Mesarich CH
    Fungal Biol; 2022 Jan; 126(1):35-46. PubMed ID: 34930557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Genome Editing in Apple Using a CRISPR/Cas9 system.
    Nishitani C; Hirai N; Komori S; Wada M; Okada K; Osakabe K; Yamamoto T; Osakabe Y
    Sci Rep; 2016 Aug; 6():31481. PubMed ID: 27530958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele.
    Tomlinson L; Yang Y; Emenecker R; Smoker M; Taylor J; Perkins S; Smith J; MacLean D; Olszewski NE; Jones JDG
    Plant Biotechnol J; 2019 Jan; 17(1):132-140. PubMed ID: 29797460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus × domestica Borkh.).
    Li J; Hou H; Li X; Xiang J; Yin X; Gao H; Zheng Y; Bassett CL; Wang X
    Plant Physiol Biochem; 2013 Sep; 70():100-14. PubMed ID: 23771035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of chalcone isomerase in apple reduces phloridzin accumulation and increases susceptibility to herbivory by two-spotted mites.
    Dare AP; Tomes S; McGhie TK; van Klink JW; Sandanayaka M; Hallett IC; Atkinson RG
    Plant J; 2020 Jul; 103(1):293-307. PubMed ID: 32096261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and Transcriptome Profiling of Slr1-d7 and Slr1-d8 Mutant Lines with a New Semi-Dominant Dwarf Allele of
    Jung YJ; Kim JH; Lee HJ; Kim DH; Yu J; Bae S; Cho YG; Kang KK
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32752068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of the GH3 family in apple (Malus × domestica).
    Yuan H; Zhao K; Lei H; Shen X; Liu Y; Liao X; Li T
    BMC Genomics; 2013 May; 14():297. PubMed ID: 23638690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phloridzin: biosynthesis, distribution and physiological relevance in plants.
    Gosch C; Halbwirth H; Stich K
    Phytochemistry; 2010 Jun; 71(8-9):838-43. PubMed ID: 20356611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.