These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36402116)

  • 1. Optimizing transcranial ultrasound delivery at large incident angles by leveraging cranial leaky guided wave dispersion.
    Mazzotti M; Kohtanen E; Erturk A; Ruzzene M
    Ultrasonics; 2023 Feb; 128():106882. PubMed ID: 36402116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of skull porosity on ultrasound transmission and wave mode conversion at large incidence angles.
    Jing B; Strassle Rojas S; Lindsey BD
    Med Phys; 2023 May; 50(5):3092-3102. PubMed ID: 36810723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation Characteristics of Cranial Leaky Lamb Waves.
    Mazzotti M; Kohtanen E; Erturk A; Ruzzene M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2129-2140. PubMed ID: 33544671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Skull Porous Trabecular Structure on Transcranial Ultrasound Imaging in the Presence of Elastic Wave Mode Conversion at Varying Incidence Angle.
    Jing B; Lindsey BD
    Ultrasound Med Biol; 2021 Sep; 47(9):2734-2748. PubMed ID: 34140169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and Computational Investigation of Guided Waves in a Human Skull.
    Sugino C; Ruzzene M; Erturk A
    Ultrasound Med Biol; 2021 Mar; 47(3):787-798. PubMed ID: 33358510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stripe artifact in transcranial ultrasound imaging.
    Vignon F; Shi WT; Yin X; Hoelscher T; Powers JE
    J Ultrasound Med; 2010 Dec; 29(12):1779-86. PubMed ID: 21098850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull.
    Pichardo S; Moreno-Hernández C; Andrew Drainville R; Sin V; Curiel L; Hynynen K
    Phys Med Biol; 2017 Aug; 62(17):6938-6962. PubMed ID: 28783716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guided Waves in the Skull.
    Estrada H; Razansky D
    Adv Exp Med Biol; 2022; 1364():411-422. PubMed ID: 35508886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the transmission efficiency of transcranial ultrasound using a dual-mode conversion technique based on Lamb waves.
    Kang KC; Kim YH; Kim JN; Kabir M; Zhang Y; Ghanouni P; Park KK; Firouzi K; Khuri-Yakub BT
    J Acoust Soc Am; 2022 Mar; 151(3):2159. PubMed ID: 35364946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ex vivo cortical porosity and thickness predictions at the tibia using full-spectrum ultrasonic guided-wave analysis.
    Schneider J; Iori G; Ramiandrisoa D; Hammami M; Gräsel M; Chappard C; Barkmann R; Laugier P; Grimal Q; Minonzio JG; Raum K
    Arch Osteoporos; 2019 Feb; 14(1):21. PubMed ID: 30783777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of Guided Acoustic Waves in a Human Skull.
    Estrada H; Gottschalk S; Reiss M; Neuschmelting V; Goldbrunner R; Razansky D
    Ultrasound Med Biol; 2018 Nov; 44(11):2388-2392. PubMed ID: 30093337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computer-controlled ultrasound pulser-receiver system for transskull fluid detection using a shear wave transmission technique.
    Tang SC; Clement GT; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1772-83. PubMed ID: 17941383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced ultrasound transmission through the human skull using shear mode conversion.
    Clement GT; White PJ; Hynynen K
    J Acoust Soc Am; 2004 Mar; 115(3):1356-64. PubMed ID: 15058357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study.
    Minonzio JG; Bochud N; Vallet Q; Bala Y; Ramiandrisoa D; Follet H; Mitton D; Laugier P
    Bone; 2018 Nov; 116():111-119. PubMed ID: 30056165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computationally Efficient Transcranial Ultrasonic Focusing: Taking Advantage of the High Correlation Length of the Human Skull.
    Maimbourg G; Guilbert J; Bancel T; Houdouin A; Raybaud G; Tanter M; Aubry JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):1993-2002. PubMed ID: 32396081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcranial shear-mode ultrasound: assessment of imaging performance and excitation techniques.
    Yousefi A; Goertz DE; Hynynen K
    IEEE Trans Med Imaging; 2009 May; 28(5):763-74. PubMed ID: 19150789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longitudinal and shear mode ultrasound propagation in human skull bone.
    White PJ; Clement GT; Hynynen K
    Ultrasound Med Biol; 2006 Jul; 32(7):1085-96. PubMed ID: 16829322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Versus Multi-channel Dispersion Analysis of Ultrasonic Guided Waves Propagating in Long Bones.
    Tran TNHT; He F; Zhang Z; Sacchi MD; Ta D; Le LH
    Ultrason Imaging; 2021 May; 43(3):157-163. PubMed ID: 33840327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of leaky Lamb waves with a semi-analytical finite element method.
    Hayashi T; Inoue D
    Ultrasonics; 2014 Aug; 54(6):1460-9. PubMed ID: 24838216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.