These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36402283)

  • 1. An inter-laboratory effort to harmonize the cell-delivered in vitro dose of aerosolized materials.
    Bannuscher A; Schmid O; Drasler B; Rohrbasser A; Braakhuis HM; Meldrum K; Zwart EP; Gremmer ER; Birk B; Rissel M; Landsiedel R; Moschini E; Evans SJ; Kumar P; Orak S; Doryab A; Erdem JS; Serchi T; Vandebriel RJ; Cassee FR; Doak SH; Petri-Fink A; Zienolddiny S; Clift MJD; Rothen-Rutishauser B
    NanoImpact; 2022 Oct; 28():100439. PubMed ID: 36402283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL®Cloud cell exposure systems.
    Ding Y; Weindl P; Lenz AG; Mayer P; Krebs T; Schmid O
    Part Fibre Toxicol; 2020 Sep; 17(1):44. PubMed ID: 32938469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerosol-Cell Exposure System Applied to Semi-Adherent Cells for Aerosolization of Lung Surfactant and Nanoparticles Followed by High Quality RNA Extraction.
    Leroux MM; Hocquel R; Bourge K; Kokot B; Kokot H; Koklič T; Štrancar J; Ding Y; Kumar P; Schmid O; Rihn BH; Ferrari L; Joubert O
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of cigarette smoke particle deposition within the Vitrocell® exposure module using quartz crystal microbalances.
    Adamson J; Thorne D; Dalrymple A; Dillon D; Meredith C
    Chem Cent J; 2013; 7():50. PubMed ID: 23497606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Vitrocell® 24/48 in vitro aerosol exposure system using mainstream cigarette smoke.
    Majeed S; Frentzel S; Wagner S; Kuehn D; Leroy P; Guy PA; Knorr A; Hoeng J; Peitsch MC
    Chem Cent J; 2014; 8(1):62. PubMed ID: 25411580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining real-time mass deposition with a quartz crystal microbalance in an electrostatic, parallel-flow, air-liquid interface exposure system.
    Kaur K; Overacker D; Ghandehari H; Reilly C; Paine R; Kelly KE
    J Aerosol Sci; 2021 Jan; 151():. PubMed ID: 33012843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Fluid Flow Exacerbates the (Pro-)Inflammatory Effects of Aerosolised Engineered Nanomaterials In Vitro.
    Meldrum K; Moura JA; Doak SH; Clift MJD
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silica nanoparticles are less toxic to human lung cells when deposited at the air-liquid interface compared to conventional submerged exposure.
    Panas A; Comouth A; Saathoff H; Leisner T; Al-Rawi M; Simon M; Seemann G; Dössel O; Mülhopt S; Paur HR; Fritsch-Decker S; Weiss C; Diabaté S
    Beilstein J Nanotechnol; 2014; 5():1590-1602. PubMed ID: 25247141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fit-for-purpose characterization of air-liquid-interface (ALI) in vitro exposure systems for e-vapor aerosol.
    Zhang J; Doshi U; Wolz RL; Kosachevsky P; Oldham MJ; Gillman IG; Lee KM
    Toxicol In Vitro; 2022 Aug; 82():105352. PubMed ID: 35341918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the Vitrocell® 24/48 aerosol exposure system for its use in exposures to liquid aerosols.
    Steiner S; Majeed S; Kratzer G; Vuillaume G; Hoeng J; Frentzel S
    Toxicol In Vitro; 2017 Aug; 42():263-272. PubMed ID: 28457873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agglomeration State of Titanium-Dioxide (TiO
    Murugadoss S; Mülhopt S; Diabaté S; Ghosh M; Paur HR; Stapf D; Weiss C; Hoet PH
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of experimentally measured and computational fluid dynamic predicted deposition and deposition uniformity of monodisperse solid particles in the Vitrocell® AMES 48 air-liquid-interface in-vitro exposure system.
    Oldham MJ; Castro N; Zhang J; Lucci F; Kosachevsky P; Rostami AA; Gilman IG; Pithawalla YB; Kuczaj AK; Hoeng J; Lee KM
    Toxicol In Vitro; 2020 Sep; 67():104870. PubMed ID: 32330563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a quantitative method for assessment of dose in in vitro evaluations using a VITROCELL® VC10® smoke exposure system.
    Keyser BM; Leverette R; Fowler K; Fields W; Hargreaves V; Reeve L; Bombick B
    Toxicol In Vitro; 2019 Apr; 56():19-29. PubMed ID: 30576853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient bioactive delivery of aerosolized drugs to human pulmonary epithelial cells cultured in air-liquid interface conditions.
    Lenz AG; Stoeger T; Cei D; Schmidmeir M; Semren N; Burgstaller G; Lentner B; Eickelberg O; Meiners S; Schmid O
    Am J Respir Cell Mol Biol; 2014 Oct; 51(4):526-35. PubMed ID: 24773184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles.
    Lenz AG; Karg E; Lentner B; Dittrich V; Brandenberger C; Rothen-Rutishauser B; Schulz H; Ferron GA; Schmid O
    Part Fibre Toxicol; 2009 Dec; 6():32. PubMed ID: 20015351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.
    Loret T; Peyret E; Dubreuil M; Aguerre-Chariol O; Bressot C; le Bihan O; Amodeo T; Trouiller B; Braun A; Egles C; Lacroix G
    Part Fibre Toxicol; 2016 Nov; 13(1):58. PubMed ID: 27919268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiplex inhalation platform to model
    Sengupta A; Dorn A; Jamshidi M; Schwob M; Hassan W; De Maddalena LL; Hugi A; Stucki AO; Dorn P; Marti TM; Wisser O; Stucki JD; Krebs T; Hobi N; Guenat OT
    Front Pharmacol; 2023; 14():1114739. PubMed ID: 36959848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The comparative in vitro assessment of e-cigarette and cigarette smoke aerosols using the γH2AX assay and applied dose measurements.
    Thorne D; Larard S; Baxter A; Meredith C; Gaҫa M
    Toxicol Lett; 2017 Jan; 265():170-178. PubMed ID: 27965004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles.
    Endes C; Schmid O; Kinnear C; Mueller S; Camarero-Espinosa S; Vanhecke D; Foster EJ; Petri-Fink A; Rothen-Rutishauser B; Weder C; Clift MJ
    Part Fibre Toxicol; 2014 Sep; 11():40. PubMed ID: 25245637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of multiple whole smoke dosimetry techniques using a VITROCELL®VC10® smoke exposure system.
    Keyser BM; Leverette R; Hollings M; Seymour A; Reeve L; Fields W
    Toxicol Rep; 2019; 6():1281-1288. PubMed ID: 31828014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.