These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36402313)

  • 1. Trade-offs in the transition to a blue economy - Mapping social acceptance of aquaculture expansion in Norway.
    Aanesen M; Czajkowski M; Lindhjem H; Navrud S
    Sci Total Environ; 2023 Feb; 859(Pt 2):160199. PubMed ID: 36402313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A partly stage-structured model for the abundance of salmon lice in salmonid farms.
    Aldrin M; Jansen PA; Stryhn H
    Epidemics; 2019 Mar; 26():9-22. PubMed ID: 30172577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking salmon aquaculture synergies and trade-offs on ecosystem services to human wellbeing constituents.
    Outeiro L; Villasante S
    Ambio; 2013 Dec; 42(8):1022-36. PubMed ID: 24214000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The blue dimensions of aquaculture: A global synthesis.
    Ahmed N; Thompson S
    Sci Total Environ; 2019 Feb; 652():851-861. PubMed ID: 30380491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of virulence under intensive farming: salmon lice increase skin lesions and reduce host growth in salmon farms.
    Ugelvik MS; Skorping A; Moberg O; Mennerat A
    J Evol Biol; 2017 Jun; 30(6):1136-1142. PubMed ID: 28374928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salmon lice--impact on wild salmonids and salmon aquaculture.
    Torrissen O; Jones S; Asche F; Guttormsen A; Skilbrei OT; Nilsen F; Horsberg TE; Jackson D
    J Fish Dis; 2013 Mar; 36(3):171-94. PubMed ID: 23311858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large scale modelling of salmon lice (Lepeophtheirus salmonis) infection pressure based on lice monitoring data from Norwegian salmonid farms.
    Kristoffersen AB; Jimenez D; Viljugrein H; Grøntvedt R; Stien A; Jansen PA
    Epidemics; 2014 Dec; 9():31-9. PubMed ID: 25480132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of aquaculture management zones as a control measure for salmon lice in Norway.
    Guarracino M; Qviller L; Lillehaug A
    Dis Aquat Organ; 2018 Aug; 130(1):1-9. PubMed ID: 30154267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of salmon louse production in Norway: effects of increasing salmon production and public management measures.
    Heuch PA; Mo TA
    Dis Aquat Organ; 2001 Jun; 45(2):145-52. PubMed ID: 11463102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using state-space models to predict the abundance of juvenile and adult sea lice on Atlantic salmon.
    Elghafghuf A; Vanderstichel R; St-Hilaire S; Stryhn H
    Epidemics; 2018 Sep; 24():76-87. PubMed ID: 29685498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association between sea lice (Lepeophtheirus salmonis) infestation on Atlantic salmon farms and wild Pacific salmon in Muchalat Inlet, Canada.
    Nekouei O; Vanderstichel R; Thakur K; Arriagada G; Patanasatienkul T; Whittaker P; Milligan B; Stewardson L; Revie CW
    Sci Rep; 2018 Mar; 8(1):4023. PubMed ID: 29507330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative risk assessment of salmon louse-induced mortality of seaward-migrating post-smolt Atlantic salmon.
    Kristoffersen AB; Qviller L; Helgesen KO; Vollset KW; Viljugrein H; Jansen PA
    Epidemics; 2018 Jun; 23():19-33. PubMed ID: 29233546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cleaner fish on sea lice in Norwegian salmon aquaculture: a national scale data analysis.
    Barrett LT; Overton K; Stien LH; Oppedal F; Dempster T
    Int J Parasitol; 2020 Sep; 50(10-11):787-796. PubMed ID: 32035989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug resistance in sea lice: a threat to salmonid aquaculture.
    Aaen SM; Helgesen KO; Bakke MJ; Kaur K; Horsberg TE
    Trends Parasitol; 2015 Feb; 31(2):72-81. PubMed ID: 25639521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Phe362Tyr mutation conveying resistance to organophosphates occurs in high frequencies in salmon lice collected from wild salmon and trout.
    Fjørtoft HB; Besnier F; Stene A; Nilsen F; Bjørn PA; Tveten AK; Finstad B; Aspehaug V; Glover KA
    Sci Rep; 2017 Oct; 7(1):14258. PubMed ID: 29079820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Doing CRISPR":
    Dankel DJ
    Politics Life Sci; 2018 Dec; 37(2):220-235. PubMed ID: 31120700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere.
    Costello MJ
    Proc Biol Sci; 2009 Oct; 276(1672):3385-94. PubMed ID: 19586950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Doing CRISPR".
    Dankel DJ
    Politics Life Sci; 2018; 37(2):220-235. PubMed ID: 30488815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems.
    Schmidt V; Amaral-Zettler L; Davidson J; Summerfelt S; Good C
    Appl Environ Microbiol; 2016 Aug; 82(15):4470-4481. PubMed ID: 27129964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sea lice as a density-dependent constraint to salmonid farming.
    Jansen PA; Kristoffersen AB; Viljugrein H; Jimenez D; Aldrin M; Stien A
    Proc Biol Sci; 2012 Jun; 279(1737):2330-8. PubMed ID: 22319130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.