These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36402313)

  • 21. Disease will limit future food supply from the global crustacean fishery and aquaculture sectors.
    Stentiford GD; Neil DM; Peeler EJ; Shields JD; Small HJ; Flegel TW; Vlak JM; Jones B; Morado F; Moss S; Lotz J; Bartholomay L; Behringer DC; Hauton C; Lightner DV
    J Invertebr Pathol; 2012 Jun; 110(2):141-57. PubMed ID: 22434002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying 'firebreaks' to fragment dispersal networks of a marine parasite.
    Samsing F; Johnsen I; Treml EA; Dempster T
    Int J Parasitol; 2019 Mar; 49(3-4):277-286. PubMed ID: 30660636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological consequences of the salmon louse (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha): implications for wild salmon ecology and management, and for salmon aquaculture.
    Brauner CJ; Sackville M; Gallagher Z; Tang S; Nendick L; Farrell AP
    Philos Trans R Soc Lond B Biol Sci; 2012 Jun; 367(1596):1770-9. PubMed ID: 22566682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors associated with baseline mortality in Norwegian Atlantic salmon farming.
    Oliveira VHS; Dean KR; Qviller L; Kirkeby C; Bang Jensen B
    Sci Rep; 2021 Jul; 11(1):14702. PubMed ID: 34282173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism (Phe362Tyr mutation) behind resistance in Lepeophtheirus salmonis pre-dates organophosphate use in salmon farming.
    Kaur K; Besnier F; Glover KA; Nilsen F; Aspehaug VT; Fjørtoft HB; Horsberg TE
    Sci Rep; 2017 Sep; 7(1):12349. PubMed ID: 28955050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of host migration, diversity and aquaculture on sea lice threats to Pacific salmon populations.
    Krkosek M; Gottesfeld A; Proctor B; Rolston D; Carr-Harris C; Lewis MA
    Proc Biol Sci; 2007 Dec; 274(1629):3141-9. PubMed ID: 17939989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of anti-sea lice pesticides, azamethiphos and deltamethrin, on European lobster (Homarus gammarus) larvae in the Norwegian marine environment.
    Parsons AE; Escobar-Lux RH; Sævik PN; Samuelsen OB; Agnalt AL
    Environ Pollut; 2020 Sep; 264():114725. PubMed ID: 32388310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supervised machine learning is superior to indicator value inference in monitoring the environmental impacts of salmon aquaculture using eDNA metabarcodes.
    Frühe L; Cordier T; Dully V; Breiner HW; Lentendu G; Pawlowski J; Martins C; Wilding TA; Stoeck T
    Mol Ecol; 2021 Jul; 30(13):2988-3006. PubMed ID: 32285497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parasites under pressure: salmon lice have the capacity to adapt to depth-based preventions in aquaculture.
    Coates A; Phillips BL; Oppedal F; Bui S; Overton K; Dempster T
    Int J Parasitol; 2020 Sep; 50(10-11):865-872. PubMed ID: 32652129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean.
    Krkosek M; Revie CW; Gargan PG; Skilbrei OT; Finstad B; Todd CD
    Proc Biol Sci; 2013 Jan; 280(1750):20122359. PubMed ID: 23135680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A global assessment of salmon aquaculture impacts on wild salmonids.
    Ford JS; Myers RA
    PLoS Biol; 2008 Feb; 6(2):e33. PubMed ID: 18271629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A stochastic network-based model to simulate the spread of pancreas disease (PD) in the Norwegian salmon industry based on the observed vessel movements and seaway distance between marine farms.
    Amirpour Haredasht S; Tavornpanich S; Jansen MD; Lyngstad TM; Yatabe T; Brun E; Martínez-López B
    Prev Vet Med; 2019 Jun; 167():174-181. PubMed ID: 30055856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Public perception of river fish biodiversity in four European countries.
    Kochalski S; Riepe C; Fujitani M; Aas Ø; Arlinghaus R
    Conserv Biol; 2019 Feb; 33(1):164-175. PubMed ID: 29956374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ecosystem services trade-offs informing impacts of marine aquaculture development in the southern Caspian Sea.
    Haghshenas E; Gholamalifard M; Mahmoudi N
    Mar Pollut Bull; 2021 Oct; 171():112792. PubMed ID: 34364138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Modelling Framework for Assessing the Risk of Emerging Diseases Associated with the Use of Cleaner Fish to Control Parasitic Sea Lice on Salmon Farms.
    Murray AG
    Transbound Emerg Dis; 2016 Apr; 63(2):e270-7. PubMed ID: 25208602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting the effectiveness of depth-based technologies to prevent salmon lice infection using a dispersal model.
    Samsing F; Johnsen I; Stien LH; Oppedal F; Albretsen J; Asplin L; Dempster T
    Prev Vet Med; 2016 Jul; 129():48-57. PubMed ID: 27317322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wild salmonids and sea louse infestations on the west coast of Scotland: sources of infection and implications for the management of marine salmon farms.
    Butler JR
    Pest Manag Sci; 2002 Jun; 58(6):595-608; discussion 622-9. PubMed ID: 12138626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The economic benefits of disease triggered early harvest: A case study of pancreas disease in farmed Atlantic salmon from Norway.
    Pettersen JM; Rich KM; Jensen BB; Aunsmo A
    Prev Vet Med; 2015 Oct; 121(3-4):314-24. PubMed ID: 26297077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of a national operational salmon lice monitoring system-From physics to fish.
    Myksvoll MS; Sandvik AD; Albretsen J; Asplin L; Johnsen IA; Karlsen Ø; Kristensen NM; Melsom A; Skardhamar J; Ådlandsvik B
    PLoS One; 2018; 13(7):e0201338. PubMed ID: 30063759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasticity in growth of farmed and wild Atlantic salmon: is the increased growth rate of farmed salmon caused by evolutionary adaptations to the commercial diet?
    Harvey AC; Solberg MF; Troianou E; Carvalho GR; Taylor MI; Creer S; Dyrhovden L; Matre IH; Glover KA
    BMC Evol Biol; 2016 Dec; 16(1):264. PubMed ID: 27905882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.