These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 36402656)
1. Advances in understanding the molecular structure of retinoschisin while questions remain of biological function. Heymann JB; Vijayasarathy C; Fariss RN; Sieving PA Prog Retin Eye Res; 2023 Jul; 95():101147. PubMed ID: 36402656 [TBL] [Abstract][Full Text] [Related]
2. Targeted Expression of Retinoschisin by Retinal Bipolar Cells in XLRS Promotes Resolution of Retinoschisis Cysts Sans RS1 From Photoreceptors. Vijayasarathy C; Zeng Y; Marangoni D; Dong L; Pan ZH; Simpson EM; Fariss RN; Sieving PA Invest Ophthalmol Vis Sci; 2022 Oct; 63(11):8. PubMed ID: 36227606 [TBL] [Abstract][Full Text] [Related]
3. Of men and mice: Human X-linked retinoschisis and fidelity in mouse modeling. Vijayasarathy C; Sardar Pasha SPB; Sieving PA Prog Retin Eye Res; 2022 Mar; 87():100999. PubMed ID: 34390869 [TBL] [Abstract][Full Text] [Related]
4. Retinoschisin (RS1), the protein encoded by the X-linked retinoschisis gene, is anchored to the surface of retinal photoreceptor and bipolar cells through its interactions with a Na/K ATPase-SARM1 complex. Molday LL; Wu WW; Molday RS J Biol Chem; 2007 Nov; 282(45):32792-801. PubMed ID: 17804407 [TBL] [Abstract][Full Text] [Related]
5. Cryo-EM of retinoschisin branched networks suggests an intercellular adhesive scaffold in the retina. Heymann JB; Vijayasarathy C; Huang RK; Dearborn AD; Sieving PA; Steven AC J Cell Biol; 2019 Mar; 218(3):1027-1038. PubMed ID: 30630865 [TBL] [Abstract][Full Text] [Related]
6. RS1, a discoidin domain-containing retinal cell adhesion protein associated with X-linked retinoschisis, exists as a novel disulfide-linked octamer. Wu WW; Wong JP; Kast J; Molday RS J Biol Chem; 2005 Mar; 280(11):10721-30. PubMed ID: 15644328 [TBL] [Abstract][Full Text] [Related]
8. Retinal organoids with X-linked retinoschisis RS1 (E72K) mutation exhibit a photoreceptor developmental delay and are rescued by gene augmentation therapy. Duan C; Ding C; Sun X; Mao S; Liang Y; Liu X; Ding X; Chen J; Tang S Stem Cell Res Ther; 2024 May; 15(1):152. PubMed ID: 38816767 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms leading to null-protein product from retinoschisin (RS1) signal-sequence mutants in X-linked retinoschisis (XLRS) disease. Vijayasarathy C; Sui R; Zeng Y; Yang G; Xu F; Caruso RC; Lewis RA; Ziccardi L; Sieving PA Hum Mutat; 2010 Nov; 31(11):1251-60. PubMed ID: 20809529 [TBL] [Abstract][Full Text] [Related]
10. Pathomechanism of mutated and secreted retinoschisin in X-linked juvenile retinoschisis. Plössl K; Schmid V; Straub K; Schmid C; Ammon M; Merkl R; Weber BHF; Friedrich U Exp Eye Res; 2018 Dec; 177():23-34. PubMed ID: 30040949 [TBL] [Abstract][Full Text] [Related]
11. The Road towards Gene Therapy for X-Linked Juvenile Retinoschisis: A Systematic Review of Preclinical Gene Therapy in Cell-Based and Rodent Models of XLRS. van der Veen I; Heredero Berzal A; Koster C; Ten Asbroek ALMA; Bergen AA; Boon CJF Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279267 [TBL] [Abstract][Full Text] [Related]
12. Cog-Wheel Octameric Structure of RS1, the Discoidin Domain Containing Retinal Protein Associated with X-Linked Retinoschisis. Bush M; Setiaputra D; Yip CK; Molday RS PLoS One; 2016; 11(1):e0147653. PubMed ID: 26812435 [TBL] [Abstract][Full Text] [Related]
13. The Na/K-ATPase is obligatory for membrane anchorage of retinoschisin, the protein involved in the pathogenesis of X-linked juvenile retinoschisis. Friedrich U; Stöhr H; Hilfinger D; Loenhardt T; Schachner M; Langmann T; Weber BH Hum Mol Genet; 2011 Mar; 20(6):1132-42. PubMed ID: 21196491 [TBL] [Abstract][Full Text] [Related]
15. Preclinical Dose-Escalation Study of Intravitreal AAV-RS1 Gene Therapy in a Mouse Model of X-linked Retinoschisis: Dose-Dependent Expression and Improved Retinal Structure and Function. Bush RA; Zeng Y; Colosi P; Kjellstrom S; Hiriyanna S; Vijayasarathy C; Santos M; Li J; Wu Z; Sieving PA Hum Gene Ther; 2016 May; 27(5):376-89. PubMed ID: 27036983 [TBL] [Abstract][Full Text] [Related]
16. An ex vivo gene therapy approach in X-linked retinoschisis. Bashar AE; Metcalfe AL; Viringipurampeer IA; Yanai A; Gregory-Evans CY; Gregory-Evans K Mol Vis; 2016; 22():718-33. PubMed ID: 27390514 [TBL] [Abstract][Full Text] [Related]
17. Molecular modeling of retinoschisin with functional analysis of pathogenic mutations from human X-linked retinoschisis. Sergeev YV; Caruso RC; Meltzer MR; Smaoui N; MacDonald IM; Sieving PA Hum Mol Genet; 2010 Apr; 19(7):1302-13. PubMed ID: 20061330 [TBL] [Abstract][Full Text] [Related]
18. Intravitreal delivery of AAV8 retinoschisin results in cell type-specific gene expression and retinal rescue in the Rs1-KO mouse. Park TK; Wu Z; Kjellstrom S; Zeng Y; Bush RA; Sieving PA; Colosi P Gene Ther; 2009 Jul; 16(7):916-26. PubMed ID: 19458650 [TBL] [Abstract][Full Text] [Related]
19. Coexpression and interaction of wild-type and missense RS1 mutants associated with X-linked retinoschisis: its relevance to gene therapy. Dyka FM; Molday RS Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2491-7. PubMed ID: 17525175 [TBL] [Abstract][Full Text] [Related]
20. Understanding variable disease severity in X-linked retinoschisis: Does RS1 secretory mechanism determine disease severity? Sudha D; Neriyanuri S; Sachidanandam R; Natarajan SN; Gandra M; Tharigopala A; Sivashanmugam M; Alameen M; Vetrivel U; Gopal L; Khetan V; Raman R; Sen P; Chidambaram S; Arunachalam JP PLoS One; 2018; 13(5):e0198086. PubMed ID: 29851975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]